Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37762137

ABSTRACT

Identification of biomarkers could help in assessing periodontal health status and monitoring treatment outcomes. Therefore, the aim of this cross-sectional study was to identify potential innovative salivary biomarkers for the diagnosis of periodontitis using an untargeted proteomic approach. Forty-five healthy non-smoker participants diagnosed as having periodontally healthy conditions (H), severe periodontitis (P), and healthy but reduced periodontium after active periodontal treatment (T) were consecutively enrolled (15 per each group) in the study. A higher number of spots were identified in the proteome of unstimulated whole saliva collected from H and T subjects compared with P group, mainly within the range of 8-40 kDa. Protein spots of interest were analysed by MALDI-TOF-MS, allowing the identification of cystatin SN (CST1) isoform, as confirmed by Western blot. CST1 was markedly expressed in the H group, while it was absent in most P samples (p < 0.001). Interestingly, a distinct CST1 expression was observed in saliva from T patients. CST1 was negatively correlated with the percentage of pathological sites (p < 0.001) and was effective in discriminating active periodontitis from healthy periodontal status (whether H or T). Therefore, salivary CST1 may be a promising non-invasive biomarker for periodontal disease diagnosis and monitoring.

2.
Int J Mol Sci ; 24(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36674750

ABSTRACT

Hypoxia is a critical condition that governs survival, self-renewal, quiescence, metabolic shift and refractoriness to leukemic stem cell (LSC) therapy. The present study aims to investigate the hypoxia-driven regulation of the mammalian Target of the Rapamycin-2 (mTORC2) complex to unravel it as a novel potential target in chronic myeloid leukemia (CML) therapeutic strategies. After inducing hypoxia in a CML cell line model, we investigated the activities of mTORC1 and mTORC2. Surprisingly, we detected a significant activation of mTORC2 at the expense of mTORC1, accompanied by the nuclear localization of the main substrate phospho-Akt (Ser473). Moreover, the Gene Ontology analysis of CML patients' CD34+ cells showed enrichment in the mTORC2 signature, further strengthening our data. The deregulation of mTOR complexes highlights how hypoxia could be crucial in CML development. In conclusion, we propose a mechanism by which CML cells residing under a low-oxygen tension, i.e., in the leukemia quiescent LSCs, singularly regulate the mTORC2 and its downstream effectors.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Sirolimus/pharmacology , Chronic Disease , Mechanistic Target of Rapamycin Complex 2/metabolism , Stem Cells/metabolism , Hypoxia
3.
J Clin Med ; 11(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35159934

ABSTRACT

The efforts made in the last decade regarding the molecular landscape of acute myeloid leukemia (AML) have created the possibility of obtaining patients' personalized treatment. Indeed, the improvement of accurate diagnosis and precise assessment of minimal residual disease (MRD) increased the number of new markers suitable for novel and targeted therapies. This progress was obtained thanks to the development of molecular techniques starting with real-time quantitative PCR (Rt-qPCR) passing through digital droplet PCR (ddPCR) and next-generation sequencing (NGS) up to the new attractive metabolomic approach. The objective of this surge in technological advances is a better delineation of AML clonal heterogeneity, monitoring patients without disease-specific mutation and designing customized post-remission strategies based on MRD assessment. In this context, metabolomics, which pertains to overall small molecules profiling, emerged as relevant access for risk stratification and targeted therapies improvement. In this review, we performed a detailed overview of the most popular modern methods used in hematological laboratories, pointing out their vital importance for MRD monitoring in order to improve overall survival, early detection of possible relapses and treatment efficacy.

4.
J Clin Med ; 11(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35054018

ABSTRACT

Large HERC E3 ubiquitin ligase family members, HERC1 and HERC2, are staggeringly complex proteins that can intervene in a wide range of biological processes, such as cell proliferation, DNA repair, neurodevelopment, and inflammation. Therefore, mutations or dysregulation of large HERCs is associated with neurological disorders, DNA repair defects, and cancer. Though their role in solid tumors started to be investigated some years ago, our knowledge about HERCs in non-solid neoplasm is greatly lagging behind. Chronic Myeloid Leukemia (CML) is a model onco-hematological disorder because of its unique and unambiguous relation between genotype and phenotype due to a single genetic alteration. In the present study, we ascertained that the presence of the BCR-ABL fusion gene was inversely associated with the expression of the HERC1 and HERC2 genes. Upon the achievement of remission, both HERC1 and HERC2 mRNAs raised again to levels comparable to those of the healthy donors. Additionally, our survey unveiled that their gene expression is sensitive to different Tyrosine Kinases Inhibitors (TKIs) in a time-dependent fashion. Interestingly, for the first time, we also observed a differential HERC1 expression when the leukemic cell lines were induced to differentiate towards different lineages revealing that HERC1 protein expression is associated with the differentiation process in a lineage-specific manner. Taken together, our findings suggest that HERC1 might act as a novel potential player in blood cell differentiation. Overall, we believe that our results are beneficial to initiate exploring the role/s of large HERCs in non-solid neoplasms.

5.
Front Cell Dev Biol ; 9: 720623, 2021.
Article in English | MEDLINE | ID: mdl-34888305

ABSTRACT

In aerobic organisms, oxygen is essential for efficient energy production, and it acts as the last acceptor of the mitochondrial electron transport chain and as regulator of gene expression. However, excessive oxygen can lead to production of deleterious reactive oxygen species. Therefore, the directed migration of single cells or cell clumps from hypoxic areas toward a region of optimal oxygen concentration, named aerotaxis, can be considered an adaptive mechanism that plays a major role in biological and pathological processes. One relevant example is the development of O2 gradients when tumors grow beyond their vascular supply, leading frequently to metastasis. In higher eukaryotic organisms, aerotaxis has only recently begun to be explored, but genetically amenable model organisms suitable to dissect this process remain an unmet need. In this regard, we sought to assess whether Dictyostelium cells, which are an established model for chemotaxis and other motility processes, could sense oxygen gradients and move directionally in their response. By assessing different physical parameters, our findings indicate that both growing and starving Dictyostelium cells under hypoxic conditions migrate directionally toward regions of higher O2 concentration. This migration is characterized by a specific pattern of cell arrangement. A thickened circular front of high cell density (corona) forms in the cell cluster and persistently moves following the oxygen gradient. Cells in the colony center, where hypoxia is more severe, are less motile and display a rounded shape. Aggregation-competent cells forming streams by chemotaxis, when confined under hypoxic conditions, undergo stream or aggregate fragmentation, giving rise to multiple small loose aggregates that coordinately move toward regions of higher O2 concentration. By testing a panel of mutants defective in chemotactic signaling, and a catalase-deficient strain, we found that the latter and the pkbR1 null exhibited altered migration patterns. Our results suggest that in Dictyostelium, like in mammalian cells, an intracellular accumulation of hydrogen peroxide favors the migration toward optimal oxygen concentration. Furthermore, differently from chemotaxis, this oxygen-driven migration is a G protein-independent process.

6.
Cancers (Basel) ; 13(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477751

ABSTRACT

HERC E3 subfamily members are parts of the E3 ubiquitin ligases and key players for a wide range of cellular functions. Though the involvement of the Ubiquitin Proteasome System in blood disorders has been broadly studied, so far the role of large HERCs in this context remains unexplored. In the present study we examined the expression of the large HECT E3 Ubiquitin Ligase, HERC1, in blood disorders. Our findings revealed that HERC1 gene expression was severely downregulated both in acute and in chronic myelogenous leukemia at diagnosis, while it is restored after complete remission achievement. Instead, in Philadelphia the negative myeloproliferative neoplasm HERC1 level was peculiarly controlled, being very low in Primary Myelofibrosis and significantly upregulated in those Essential Thrombocytemia specimens harboring the mutation in the calreticulin gene. Remarkably, in CML cells HERC1 mRNA level was associated with the BCR-ABL1 kinase activity and the HERC1 protein physically interacted with BCR-ABL1. Furthermore, we found that HERC1 was directly tyrosine phosphorylated by the ABL kinase. Overall and for the first time, we provide original evidence on the potential tumor-suppressing or -promoting properties, depending on the context, of HERC1 in myeloid related blood disorders.

7.
Cancers (Basel) ; 13(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466839

ABSTRACT

Chronic myeloid leukemia is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome that originates from the reciprocal translocation t(9;22)(q34;q11.2) and encodes for the constitutively active tyrosine kinase protein BCR-ABL1 from the Breakpoint Cluster Region (BCR) sequence and the Abelson (ABL1) gene. Despite BCR-ABL1 being one of the most studied oncogenic proteins, some molecular mechanisms remain enigmatic, and several of the proteins, acting either as positive or negative BCR-ABL1 regulators, are still unknown. The Drosophila melanogaster represents a powerful tool for genetic investigations and a promising model to study the BCR-ABL1 signaling pathway. To identify new components involved in BCR-ABL1 transforming activity, we conducted an extensive genetic screening using different Drosophila mutant strains carrying specific small deletions within the chromosomes 2 and 3 and the gmrGal4,UAS-BCR-ABL1 4M/TM3 transgenic Drosophila as the background. From the screening, we identified several putative candidate genes that may be involved either in sustaining chronic myeloid leukemia (CML) or in its progression. We also identified, for the first time, a tight connection between the BCR-ABL1 protein and Rab family members, and this correlation was also validated in CML patients. In conclusion, our data identified many genes that, by interacting with BCR-ABL1, regulate several important biological pathways and could promote disease onset and progression.

8.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081324

ABSTRACT

Iron is crucial to satisfy several mitochondrial functions including energy metabolism and oxidative phosphorylation. Patients affected by Myelodysplastic Syndromes (MDS) and acute myeloid leukemia (AML) are frequently characterized by iron overload (IOL), due to continuous red blood cell (RBC) transfusions. This event impacts the overall survival (OS) and it is associated with increased mortality in lower-risk MDS patients. Accordingly, the oral iron chelator Deferasirox (DFX) has been reported to improve the OS and delay leukemic transformation. However, the molecular players and the biological mechanisms laying behind remain currently mostly undefined. The aim of this study has been to investigate the potential anti-leukemic effect of DFX, by functionally and molecularly analyzing its effects in three different leukemia cell lines, harboring or not p53 mutations, and in human primary cells derived from 15 MDS/AML patients. Our findings indicated that DFX can lead to apoptosis, impairment of cell growth only in a context of IOL, and can induce a significant alteration of mitochondria network, with a sharp reduction in mitochondrial activity. Moreover, through a remarkable reduction of Murine Double Minute 2 (MDM2), known to regulate the stability of p53 and p73 proteins, we observed an enhancement of p53 transcriptional activity after DFX. Interestingly, this iron depletion-triggered signaling is enabled by p73, in the absence of p53, or in the presence of a p53 mutant form. In conclusion, we propose a mechanism by which the increased p53 family transcriptional activity and protein stability could explain the potential benefits of iron chelation therapy in terms of improving OS and delaying leukemic transformation.


Subject(s)
Deferasirox/pharmacology , Iron Chelating Agents/pharmacology , Leukemia, Myeloid, Acute/metabolism , Mitochondria/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Humans , Iron/metabolism , Mitochondria/drug effects , Protein Stability , Proto-Oncogene Proteins c-mdm2/metabolism
9.
J Proteomics ; 227: 103920, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32712371

ABSTRACT

Molluscs were one of the most widely-used natural resources in the past, and their shells are abundant among archaeological findings. However, our knowledge of the variety of shells that were circulating in prehistoric times (and thus their socio-economic and cultural value) is scarce due to the difficulty of achieving taxonomic determination of fragmented and/or worked remains. This study aims to obtain molecular barcodes based on peptide mass fingerprints (PMFs) of intracrystalline proteins, in order to obtain shell identification. Palaeoproteomic applications on shells are challenging, due to low concentration of molluscan proteins and an incomplete understanding of their sequences. We explore different approaches for protein extraction from small-size samples (<20 mg), followed by MALDI-TOF-MS analysis. The SP3 (single-pot, solid-phase) sample preparation method was found to be the most successful in retrieving the intracrystalline protein fraction from seven molluscan shell taxa, which belong to different phylogenetic groups, possess distinct microstructures and are relevant for archaeology. Furthermore, all the shells analysed, including a 7000-year-old specimen of the freshwater bivalve Pseudunio, yielded good-quality distinctive spectra, demonstrating that PMFs can be used for shell taxon determination. Our work suggests good potential for large-scale screening of archaeological molluscan remains. SIGNIFICANCE: We characterise for the first time the peptide mass fingerprints of the intracrystalline shell protein fraction isolated from different molluscan taxa. We demonstrate that these proteins yield distinctive PMFs, even for shells that are phylogenetically related and/or that display similar microstructures. Furthermore, we extend the range of sample preparation approaches for "shellomics" by testing the SP3 method, which proved to be well-suited to shell protein extraction from small-size and protein-poor samples. This work thus lays the foundations for future large-scale applications for the identification of mollusc shells and other invertebrate remains from the archaeological and palaeontological records.


Subject(s)
Archaeology , Bivalvia , Animal Shells , Animals , Peptide Mapping , Peptides , Phylogeny
10.
Int J Mol Sci ; 21(11)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486249

ABSTRACT

Mitochondria are the main fascinating energetic source into the cells. Their number, shape, and dynamism are controlled by the cell's type and current behavior. The perturbation of the mitochondrial inward system via stress response and/or oncogenic insults could activate several trafficking molecular mechanisms with the intention to solve the problem. In this review, we aimed to clarify the crucial pathways in the mitochondrial system, dissecting the different metabolic defects, with a special emphasis on hematological malignancies. We investigated the pivotal role of mitochondria in the maintenance of hematopoietic stem cells (HSCs) and their main alterations that could induce malignant transformation, culminating in the generation of leukemic stem cells (LSCs). In addition, we presented an overview of LSCs mitochondrial dysregulated mechanisms in terms of (1) increasing in oxidative phosphorylation program (OXPHOS), as a crucial process for survival and self-renewal of LSCs,(2) low levels of reactive oxygen species (ROS), and (3) aberrant expression of B-cell lymphoma 2 (Bcl-2) with sustained mitophagy. Furthermore, these peculiarities may represent attractive new "hot spots" for mitochondrial-targeted therapy. Finally, we remark the potential of the LCS metabolic effectors to be exploited as novel therapeutic targets.


Subject(s)
Hematologic Neoplasms/metabolism , Hematopoietic Stem Cells/metabolism , Leukemia/metabolism , Mitochondria/metabolism , Animals , Apoptosis , Cell Differentiation , Cell Lineage , Cell Survival , Cell Transformation, Neoplastic/metabolism , Gene Expression Regulation, Leukemic , Humans , Mice , Mitophagy , Neoplastic Stem Cells/metabolism , Oxidative Phosphorylation , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
11.
Int J Dev Biol ; 63(8-9-10): 529-539, 2019.
Article in English | MEDLINE | ID: mdl-31840790

ABSTRACT

By protein quality control and degradation, the ubiquitin system drives many essential regulatory processes such as cell cycle and division, signalling, DNA replication and repair. Therefore, dysfunctions in the ubiquitin system lead to many human disease states. However, despite the immense progress made over the last couple of decades, it appears that the ubiquitin system is more complex and multi-faced than formerly expected. In addition to a rich repertoire of ubiquitin, ubiquitin conjugating and de-ubiquitylating enzymes, the social amoeba Dictyostelium discoideum genome encodes also for a wide array of ubiquitin binding domain-containing proteins, thus offering the possibility to explore the biology of the ubiquitin system from cell and molecular biology points of view. We here provide an overview on the current knowledge about the Ub-system components and we discuss how Dictyostelium might be an outstanding eukaryotic cell model for unravelling the still mostly unknown ubiquitination mechanisms of some human diseases.


Subject(s)
Dictyostelium/genetics , Dictyostelium/physiology , Ubiquitin/metabolism , Animals , Cell Biology , Humans , Mice , Models, Biological , Plasmids/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Domains , Protein Processing, Post-Translational , Proteolysis , RNA Interference , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
12.
J Cell Sci ; 132(22)2019 11 14.
Article in English | MEDLINE | ID: mdl-31653780

ABSTRACT

Mammalian, or mechanistic, target of rapamycin complex 2 (mTORC2) regulates a variety of vital cellular processes, and its aberrant functioning is often associated with various diseases. Rictor is a peculiar and distinguishing mTORC2 component playing a pivotal role in controlling its assembly and activity. Among extant organisms, Rictor is conserved from unicellular eukaryotes to metazoans. We replaced two distinct, but conserved, glycine residues in both the Dictyostelium piaA gene and its human ortholog, RICTOR The two conserved residues are spaced ∼50 amino acids apart, and both are embedded within a conserved region falling in between the Ras-GEFN2 and Rictor-_V domains. The effects of point mutations on the mTORC2 activity and integrity were assessed by biochemical and functional assays. In both cases, these equivalent point mutations in the mammalian RICTOR and DictyosteliumpiaA gene impaired mTORC2 activity and integrity. Our data indicate that the two glycine residues are essential for the maintenance of mTORC2 activity and integrity in organisms that appear to be distantly related, suggesting that they have a evolutionarily conserved role in the assembly and proper mTORC2 functioning.


Subject(s)
Dictyostelium/metabolism , Glycine/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Amino Acid Sequence , Animals , Dictyostelium/genetics , Glycine/genetics , Humans , Mammals , Mechanistic Target of Rapamycin Complex 2/genetics , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Structure-Activity Relationship
13.
J Cell Mol Med ; 23(6): 4349-4357, 2019 06.
Article in English | MEDLINE | ID: mdl-31033209

ABSTRACT

Myeloproliferative neoplasms are chronic myeloid cancers divided in Philadelphia positive and negative. The JAK2 V617F is the most common mutation in Philadelphia negative patients and results in a constitutive activation of the JAK/STAT pathway, conferring a proliferative advantage and apoptosis inhibition. Recent studies identified a functional crosstalk between the JAK/STAT and mTOR pathways. The identification of an effective therapy is often difficult, so the availability of new therapeutic approaches might be attractive. Previous studies showed that curcumin, the active principle of the Curcuma longa, can suppress JAK2/STAT pathways in different type of cancer and injuries. In this study, we investigated the anti-proliferative and pro-apoptotic effects of curcumin in JAK2 V617F-mutated cells. HEL cell line and cells from patients JAK2 V617F mutated have been incubated with increasing concentrations of curcumin for different time. Apoptosis and proliferation were evaluated. Subsequently, JAK2/STAT and AKT/mTOR pathways were investigated at both RNA and protein levels. We found that curcumin induces apoptosis and inhibition of proliferation in HEL cells. Furthermore, we showed that curcumin inhibits JAK2/STAT and mTORC1 pathways in JAK2 V617F-mutated cells. This inhibition suggests that curcumin could represent an alternative strategy to be explored for the treatment of patients with myeloproliferative neoplasms.


Subject(s)
Curcumin/pharmacology , Janus Kinase 2/antagonists & inhibitors , Leukemia, Erythroblastic, Acute/pathology , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mutation , Myeloproliferative Disorders/pathology , STAT Transcription Factors/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor , Case-Control Studies , Cell Movement , Cell Proliferation , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Leukemia, Erythroblastic, Acute/drug therapy , Leukemia, Erythroblastic, Acute/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Middle Aged , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/metabolism , Phosphorylation , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Tumor Cells, Cultured , Young Adult
14.
Int J Mol Sci ; 18(10)2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29048338

ABSTRACT

Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions, and it has been widely implicated in human diseases. These receptors activate a common molecular switch that is represented by the heterotrimeric G-protein generating a number of second messengers (cAMP, cGMP, DAG, IP3, Ca2+ etc.), leading to a plethora of diverse cellular responses. Spatiotemporal regulation of signals generated by a given GPCR is crucial for proper signalling and is accomplished by a series of biochemical modifications. Over the past few years, it has become evident that many signalling proteins also undergo ubiquitination, a posttranslational modification that typically leads to protein degradation, but also mediates processes such as protein-protein interaction and protein subcellular localization. The social amoeba Dictyostelium discoideum has proven to be an excellent model to investigate signal transduction triggered by GPCR activation, as cAMP signalling via GPCR is a major regulator of chemotaxis, cell differentiation, and multicellular morphogenesis. Ubiquitin ligases have been recently involved in these processes. In the present review, we will summarize the most significant pathways activated upon GPCRs stimulation and discuss the role played by ubiquitination in Dictyostelium cells.


Subject(s)
Dictyostelium/metabolism , Protozoan Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Ubiquitination , Protozoan Proteins/genetics , Receptors, G-Protein-Coupled/genetics
15.
Mol Biotechnol ; 59(9-10): 425-434, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28801830

ABSTRACT

Enamel is the covering tissue of teeth, made of regularly arranged hydroxyapatite crystals deposited on an organic matrix composed of 90% amelogenin that is completely degraded at the end of the enamel formation process. Amelogenin has a biomineralizing activity, forming nanoparticles or nanoribbons that guide hydroxyapatite deposit, and regenerative functions in bone and vascular tissue and in wound healing. Biotechnological products containing amelogenin seem to facilitate these processes. Here, we describe the production of human amelogenin in plants by transient transformation of Nicotiana benthamiana with constructs carrying synthetic genes with optimized human or plant codons. Both genes yielded approximately 500 µg of total amelogenin per gram of fresh leaf tissue. Two purification procedures based on affinity chromatography or on intrinsic solubility properties of the protein were followed, yielding from 12 to 150 µg of amelogenin per gram of fresh leaf tissue, respectively, at different purity. The identity of the plant-made human amelogenin was confirmed by MALDI-TOF-MS analysis of peptides generated following chymotrypsin digestion. Using dynamic light scattering, we showed that plant extracts made in acetic acid containing human amelogenin have a bimodal distribution of agglomerates, with hydrodynamic diameters of 22.8 ± 3.8 and 389.5 ± 86.6 nm. To the best of our knowledge, this is the first report of expression of human amelogenin in plants, offering the possibility to use this plant-made protein for nanotechnological applications.


Subject(s)
Amelogenin/genetics , Cloning, Molecular , Nanotechnology/methods , Nicotiana/genetics , Amelogenin/biosynthesis , Amelogenin/isolation & purification , Amino Acid Sequence/genetics , Gene Expression Regulation, Plant/genetics , Humans , Mass Spectrometry , Peptides/chemistry , Peptides/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
Mol Cell Biochem ; 434(1-2): 51-60, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28432552

ABSTRACT

Nandrolone decanoate (ND), an anabolic-androgenic steroid prohibited in collegiate and professional sports, is associated with detrimental cardiovascular effects through redox-dependent mechanisms. We previously observed that high-dose short-term ND administration (15 mg/kg for 2 weeks) did not induce left heart ventricular hypertrophy and, paradoxically, improved postischemic response, whereas chronic ND treatment (5 mg/kg twice a week for 10 weeks) significantly reduced the cardioprotective effect of postconditioning, with an increase in infarct size and a decrease in cardiac performance. We wanted to determine whether short-term ND administration could affect the oxidative redox status in animals exposed to acute restraint stress. Our hypothesis was that, depending on treatment schedule, ND may have a double-edged sword effect. Measurement of malondialdehyde and 4-hydroxynonenal, two oxidative stress markers, in rat plasma and left heart ventricular tissue, revealed that the levels of both markers were increased in animals exposed to restraint stress, whereas no increase in marker levels was noted in animals pretreated with ND, indicating a possible protective action of ND against stress-induced oxidative damage. Furthermore, isolation and identification of proteins extracted from the left heart ventricular tissue samples of rats pretreated or not with ND and exposed to acute stress showed a prevalent expression of enzymes involved in amino acid synthesis and energy metabolism. Among other proteins, peroxiredoxin 6 and alpha B-crystallin, both involved in the oxidative stress response, were predominantly expressed in the left heart ventricular tissues of the ND-pretreated rats. In conclusion, ND seems to reduce oxidative stress by inducing the expression of antioxidant proteins in the hearts of restraint-stressed animals, thus contributing to amelioration of postischemic heart performance.


Subject(s)
Anabolic Agents/pharmacology , Biomarkers/metabolism , Heart Ventricles/drug effects , Immobilization , Nandrolone/administration & dosage , Oxidative Stress , Stress, Physiological , Aldehydes/blood , Aldehydes/metabolism , Amino Acids/biosynthesis , Animals , Biomarkers/blood , Blotting, Western , Electrophoresis, Gel, Two-Dimensional , Energy Metabolism , Male , Malondialdehyde/blood , Malondialdehyde/metabolism , Mass Spectrometry , Rats , Rats, Sprague-Dawley
17.
J Cell Sci ; 130(3): 551-562, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28049717

ABSTRACT

Cyclic AMP (cAMP) binding to G-protein-coupled receptors (GPCRs) orchestrates chemotaxis and development in Dictyostelium. By activating the RasC-TORC2-PKB (PKB is also known as AKT in mammals) module, cAMP regulates cell polarization during chemotaxis. TORC2 also mediates GPCR-dependent stimulation of adenylyl cyclase A (ACA), enhancing cAMP relay and developmental gene expression. Thus, mutants defective in the TORC2 Pia subunit (also known as Rictor in mammals) are impaired in chemotaxis and development. Near-saturation mutagenesis of a Pia mutant by random gene disruption led to selection of two suppressor mutants in which spontaneous chemotaxis and development were restored. PKB phosphorylation and chemotactic cell polarization were rescued, whereas Pia-dependent ACA stimulation was not restored but bypassed, leading to cAMP-dependent developmental gene expression. Knocking out the gene encoding the adenylylcyclase B (ACB) in the parental strain showed ACB to be essential for this process. The gene tagged in the suppressor mutants encodes a newly unidentified HECT ubiquitin ligase that is homologous to mammalian HERC1, but harbours a pleckstrin homology domain. Expression of the isolated wild-type HECT domain, but not a mutant HECT C5185S form, from this protein was sufficient to reconstitute the parental phenotype. The new ubiquitin ligase appears to regulate cell sensitivity to cAMP signalling and TORC2-dependent PKB phosphorylation.


Subject(s)
Chemotaxis , Dictyostelium/cytology , Dictyostelium/enzymology , Protozoan Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Adenylyl Cyclases/metabolism , Cell Polarity , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA/metabolism , Dictyostelium/genetics , GTP-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , Genes, Suppressor , Models, Biological , Mutation/genetics , Phenotype , Phosphorylation , Protein Domains , Protozoan Proteins/chemistry , Signal Transduction , Substrate Specificity , Ubiquitin-Protein Ligases/chemistry
18.
Methods Mol Biol ; 1120: 407-20, 2014.
Article in English | MEDLINE | ID: mdl-24470039

ABSTRACT

Since the discovery of Ras, Ras-mediated transforming activity has been the major investigative area of interest. Soon thereafter it has emerged that Ras family members regulate different biological processes, other than cell growth, like development and fine-tune the balance between cell death and survival. The lower metazoan Dictyostelium discoideum is a powerful and genetically accessible model organism that has been used to elucidate the roles played by different Ras members in some biological processes, such as cell motility and development. In the following chapter we describe some very basic techniques aiming to identify novel Ras signaling components, throughout insertional mutagenesis screening, and to investigate their role(s) in development and chemotaxis processes.


Subject(s)
Dictyostelium/cytology , Dictyostelium/enzymology , Signal Transduction , ras Proteins/metabolism , Adenylyl Cyclases/metabolism , Anti-Bacterial Agents/pharmacology , Cell Culture Techniques , Chemotaxis , DNA/genetics , Dictyostelium/drug effects , Dictyostelium/genetics , Mutagenesis/drug effects , Phenotype
19.
J Signal Transduct ; 2012: 807682, 2012.
Article in English | MEDLINE | ID: mdl-22203898

ABSTRACT

The coordinate modulation of the cellular functions of cadherins and integrins plays an essential role in fundamental physiological and pathological processes, including morphogenesis, tissue differentiation and renewal, wound healing, immune surveillance, inflammatory response, tumor progression, and metastasis. However, the molecular mechanisms underlying the fine-tuned functional communication between cadherins and integrins are still elusive. This paper focuses on recent findings towards the involvement of reactive oxygen species (ROS) in the regulation of cell adhesion and signal transduction functions of integrins and cadherins, pointing to ROS as emerging strong candidates for modulating the molecular crosstalk between cell-matrix and cell-cell adhesion receptors.

20.
BMC Genomics ; 9: 291, 2008 Jun 17.
Article in English | MEDLINE | ID: mdl-18559084

ABSTRACT

BACKGROUND: Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. RESULTS: The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium), respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, amino acid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could be part of a signalling complex regulating phagocytosis and adaptational downstream responses. CONCLUSION: The results highlight differences between phagocytosis and macropinocytosis, and provide the basis for targeted functional analysis of new candidate genes and for comparison studies with transcriptomes during infection with pathogenic bacteria.


Subject(s)
Dictyostelium/genetics , Dictyostelium/physiology , Genome, Protozoan , Phagocytosis/genetics , Amino Acids/metabolism , Animals , Carbohydrate Metabolism , Culture Media , Cytoskeletal Proteins/genetics , Dictyostelium/growth & development , Escherichia coli , Gene Expression Profiling , Lipid Metabolism , Mitochondria/metabolism , Models, Genetic , Multigene Family , Oligonucleotide Array Sequence Analysis , Phagocytosis/physiology , Pinocytosis/genetics , Protein Biosynthesis , Proteome , Protozoan Proteins/genetics , Signal Transduction , Sterols/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...