Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharm ; 73(3): 405-422, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37708955

ABSTRACT

Despite the importance of process parameters in the printing of solid dosage forms using fused deposition modelling (FDM) technology, the field is still poorly explored. A design of experiment study was conducted to understand the complete set of process parameters of a custom developed FDM 3D printer and their influence on tablet disintegration time. Nine settings in the Simplify 3D printing process design software were evaluated with further experimental investigation conducted on the influence of infill percentage, infill pattern, nozzle diameter, and layer height. The percentage of infill was identified as the most impactful parameter, as increasing it parabolically affected the increase of disintegration time. Furthermore, a larger nozzle diameter prolonged tablet disintegration, since thicker extruded strands are generated through wider nozzles during the printing process. Three infill patterns were selected for in-depth analysis, demonstrating the clear importance of the geometry of the internal structure to resist mechanical stress during the disintegration test. Lastly, layer height did not influence the disintegration time. A statistical model with accurate fit (R 2 = 0.928) and predictability (Q 2 = 0.847) was created. In addition, only the infill pattern and layer height influenced both the uniformity of mass and uniformity of the disintegration time, which demonstrates the robustness of the printing process.


Subject(s)
Models, Statistical , Printing, Three-Dimensional , Tablets
2.
Pharmaceutics ; 14(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36015194

ABSTRACT

Binder jetting has the potential to revolutionize the way we produce medicine. However, tablets produced by binder jetting technology can be quite fragile and hard to handle. In this study, the printing process and ink composition were examined to optimize the mechanical properties of tablets. A model formulation containing the ketoprofen drug was developed and used as a base for optimization. Firstly, important printing parameters were identified with a fractional factorial design. Saturation and layer height critically influenced selected tablet properties. Relevant process parameters were optimized for tablet mechanical strength by using the D-optimization DoE approach. The best mechanical properties were achieved when saturation was set to 1 and layer height to 150 µm. On the other hand, binder ink composition did not appear to impact tablet mechanical strength as much as process parameters did. Three ethanol-water mixtures were tested at three tablet strength levels and no definitive conclusions could be drawn. The binder jetting process can be wasteful, especially if the unbound powder cannot be reused. To determine the suitability of powder blend recycling, the ketoprofen content was measured for 27 subsequent batches of tablets. While the trendline did indicate a slight reduction in ketoprofen content, the powder blend reuse can nevertheless be employed.

SELECTION OF CITATIONS
SEARCH DETAIL
...