Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1175478, 2023.
Article in English | MEDLINE | ID: mdl-37274220

ABSTRACT

Despite the fact that sleep deprivation substantially affects the way animals regulate their body temperature, the specific mechanisms behind this phenomenon are not well understood. In both mammals and flies, neural circuits regulating sleep and thermoregulation overlap, suggesting an interdependence that may be relevant for sleep function. To investigate this relationship further, we exposed flies to 12 h of sleep deprivation, or 48 h of sleep fragmentation and evaluated temperature preference in a thermal gradient. Flies exposed to 12 h of sleep deprivation chose warmer temperatures after sleep deprivation. Importantly, sleep fragmentation, which prevents flies from entering deeper stages of sleep, but does not activate sleep homeostatic mechanisms nor induce impairments in short-term memory also resulted in flies choosing warmer temperatures. To identify the underlying neuronal circuits, we used RNAi to knock down the receptor for Pigment dispersing factor, a peptide that influences circadian rhythms, temperature preference and sleep. Expressing UAS-PdfrRNAi in subsets of clock neurons prevented sleep fragmentation from increasing temperature preference. Finally, we evaluated temperature preference after flies had undergone a social jet lag protocol which is known to disrupt clock neurons. In this protocol, flies experience a 3 h light phase delay on Friday followed by a 3 h light advance on Sunday evening. Flies exposed to social jet lag exhibited an increase in temperature preference which persisted for several days. Our findings identify specific clock neurons that are modulated by sleep disruption to increase temperature preference. Moreover, our data indicate that temperature preference may be a more sensitive indicator of sleep disruption than learning and memory.

2.
Neurosci Insights ; 18: 26331055221146755, 2023.
Article in English | MEDLINE | ID: mdl-36643884

ABSTRACT

Repeated exposure to alcohol alters neuromolecular signaling that influences acute and long-lasting behaviors underlying Alcohol Use Disorder (AUD). Recent animal model research has implicated changes in the conserved JAK/STAT pathway, a signaling pathway classically associated with development and the innate immune system. How ethanol exposure impacts STAT signaling within neural cells is currently unclear. Here, we investigated the role of Drosophila Stat92E in ethanol-induced locomotion, signaling activity, and downstream transcriptional responses. Findings suggest that expressing Stat92E-RNAi causes enhanced ethanol-induced hyperactivity in flies previously exposed to ethanol. Furthermore, alternative splicing of Stat92E itself was detected after repeated ethanol exposure, although no changes were found in downstream transcriptional activity. This work adds to our growing understanding of altered neuromolecular signaling following ethanol exposure and suggests that STAT signaling may be a relevant target to consider for AUD treatment.

3.
PLoS Biol ; 20(9): e3001797, 2022 09.
Article in English | MEDLINE | ID: mdl-36173939

ABSTRACT

Falling asleep at the wrong time can place an individual at risk of immediate physical harm. However, not sleeping degrades cognition and adaptive behavior. To understand how animals match sleep need with environmental demands, we used live-brain imaging to examine the physiological response properties of the dorsal fan-shaped body (dFB) following interventions that modify sleep (sleep deprivation, starvation, time-restricted feeding, memory consolidation) in Drosophila. We report that dFB neurons change their physiological response-properties to dopamine (DA) and allatostatin-A (AstA) in response to different types of waking. That is, dFB neurons are not simply passive components of a hard-wired circuit. Rather, the dFB neurons intrinsically regulate their response to the activity from upstream circuits. Finally, we show that the dFB appears to contain a memory trace of prior exposure to metabolic challenges induced by starvation or time-restricted feeding. Together, these data highlight that the sleep homeostat is plastic and suggests an underlying mechanism.


Subject(s)
Dopamine , Starvation , Animals , Drosophila , Neurons , Plastics , Sleep , Sleep Deprivation
SELECTION OF CITATIONS
SEARCH DETAIL
...