Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(20): 9413-9419, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37820373

ABSTRACT

Two-dimensional Mott materials have recently been reported in the dichalcogenide family with high potential for Mottronic applications. Nevertheless, their widespread use as a single or few layers is hampered by their limited device integration resulting from their growth on graphene, a metallic substrate. Here, we report on the fabrication of 1T-TaSe2 monolayers grown by molecular beam epitaxy on semiconducting gallium phosphide substrates. At the nanoscale, the charge density wave reconstruction and a moiré pattern resulting from the monolayer interaction with the substrate are observed by scanning tunneling microscopy. The fully open gap unveiled by tunneling spectroscopy, which can be further manipulated by the proximity of a metal tip, is confirmed by transport measurements from micrometric to millimetric scales, demonstrating a robust Mott insulating phase at up to 400 K.

2.
Nanotechnology ; 33(37)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35654005

ABSTRACT

We have studied electronic transport in undoped GaAs/SrTiO3core-shell nanowires standing on their Si substrate with two-tip scanning tunneling microscopy in ultrahigh vacuum. The resistance profile along the nanowires is proportional to the tip separation with resistances per unit length of a few GΩ/µm. Examination of the different transport pathways parallel to the nanowire growth axis reveals that the measured resistance is consistent with a conduction along the interfacial states at the GaAs{110} sidewalls, the 2 nm thick SrTiO3shell being as much as resistive, despite oxygen deficient growth conditions. The origin of the shell resistivity is discussed in light of the nanowire analysis with transmission electron microscopy and Raman spectroscopy, providing good grounds for the use of SrTiO3shells as gate insulators.

SELECTION OF CITATIONS
SEARCH DETAIL
...