Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cancer ; 3(7): 821-836, 2022 07.
Article in English | MEDLINE | ID: mdl-35883003

ABSTRACT

Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/genetics , Exons/genetics , Genes, erbB-2 , Humans , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/genetics
2.
J Med Chem ; 62(17): 7976-7997, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31365252

ABSTRACT

Phosphoglycerate dehydrogenase (PHGDH) is known to be the rate-limiting enzyme in the serine synthesis pathway in humans. It converts glycolysis-derived 3-phosphoglycerate to 3-phosphopyruvate in a co-factor-dependent oxidation reaction. Herein, we report the discovery of BI-4916, a prodrug of the co-factor nicotinamide adenine dinucleotide (NADH/NAD+)-competitive PHGDH inhibitor BI-4924, which has shown high selectivity against the majority of other dehydrogenase targets. Starting with a fragment-based screening, a subsequent hit optimization using structure-based drug design was conducted to deliver a single-digit nanomolar lead series and to improve potency by 6 orders of magnitude. To this end, an intracellular ester cleavage mechanism of the ester prodrug was utilized to achieve intracellular enrichment of the actual carboxylic acid based drug and thus overcome high cytosolic levels of the competitive cofactors NADH/NAD+.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Serine/antagonists & inhibitors , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Phosphoglycerate Dehydrogenase/metabolism , Serine/biosynthesis , Structure-Activity Relationship
3.
J Med Chem ; 51(7): 2244-53, 2008 Apr 10.
Article in English | MEDLINE | ID: mdl-18348518

ABSTRACT

Derivatives of etomidate were evaluated as inhibitors of adrenal steroid 11beta-hydroxylations. Stereoselective coupling by Mitsunobu produced chirally pure analogues to study the effect of configuration, modification of the ester, and substitution in the phenyl ring, with the aim to probe specific sites for introducing a radionuclide. Iodophenyl metomidate (IMTO) labeled with iodine-131 served as radioligand for structure-affinity relationship studies. We have characterized the kinetic parameters of specific (131)I-IMTO binding on rat adrenal membranes and used the displacement of (131)I-IMTO binding to evaluate functionalized MTO analogues. Our results indicated that (1) ( R)-configuration is essential for high affinity, (2) highest potency resides in the ethyl, 2-propyl, and 2-fluoroethyl esters, and (3) substitution of the phenyl ring is well tolerated. The clinically used inhibitors metyrapone and ketoconazole inhibited (131)I-IMTO binding with low affinity. Incubation of selected analogues with human adrenocortical NCI-h295 cells demonstrated a high correlation with the inhibitory effect on cortisol secretion.


Subject(s)
Adrenal Cortex/metabolism , Etomidate/chemical synthesis , Etomidate/pharmacology , Steroid 11-beta-Hydroxylase/antagonists & inhibitors , Animals , Binding Sites , Etomidate/analogs & derivatives , Etomidate/chemistry , Humans , Hydroxylation , Iodine Radioisotopes/chemistry , Kinetics , Male , Molecular Structure , Rats , Rats, Wistar , Stereoisomerism , Steroid 11-beta-Hydroxylase/metabolism , Structure-Activity Relationship
4.
J Am Chem Soc ; 127(40): 13934-40, 2005 Oct 12.
Article in English | MEDLINE | ID: mdl-16201815

ABSTRACT

This paper describes the synthesis of chiral methanols [(R)- and (S)-CHDTOH] in a total of 12 steps starting from (chloromethyl)dimethylphenylsilane. The metalated carbamates derived from (dimethylphenylsilyl)methanol and secondary amines were borylated at low temperatures (-78 or -94 degrees C) using borates derived from tert-butyl alcohol and (+)-pinane-2,3-diol or (R,R)-1,2-dicyclohexylethane-1,2-diol to give diastereomeric boronates (dr 1:1 to 5:1). The carbamoyloxy group could be replaced smoothly with inversion of configuration by an isotope of hydrogen using LiAlH(D)4 [or LiBEt3H(D,T)]. If the individual diastereomeric boronates were reduced with LiAlD4 and oxidized with H2O2/NaHCO3, monodeuterated (dimethylphenylsilyl)methanols of ee > 98% resulted. The absolute configurations of the boronates were based on a single-crystal X-ray structure analysis. Brook rearrangement of the enantiomers of (dimethylphenylsilyl)-[(2)H1,(3)H]methanol prepared similarly furnished the chiral methanols which were isolated as 3,5-dinitrobenzoates in 81% and 90% yield, respectively. For determination of the enantiomeric excesses (98%), the methyl groups were transferred to the nitrogen of (S)-2-methylpiperidine and (3)H{(1)H} NMR spectra were recorded. The Brook rearrangement is a stereospecific process following a retentive course. The chiral methanols were also transformed into methyl tosylates used to prepare [(2)H1,(3)H-methyl]methionines in high overall yields (>80%).


Subject(s)
Benzenesulfonates/chemical synthesis , Methanol/analogs & derivatives , Methanol/chemical synthesis , Methionine/chemical synthesis , Benzenesulfonates/chemistry , Crystallography, X-Ray , Methanol/chemistry , Methionine/chemistry , Models, Molecular , Molecular Conformation , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...