Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 48(5): e67-e85, 2021 May.
Article in English | MEDLINE | ID: mdl-33577091

ABSTRACT

Over the last few years, magnetic resonance image-guided radiotherapy systems have been introduced into the clinic, allowing for daily online plan adaption. While quality assurance (QA) is similar to conventional radiotherapy systems, there is a need to introduce or modify measurement techniques. As yet, there is no consensus guidance on the QA equipment and test requirements for such systems. Therefore, this report provides an overview of QA equipment and techniques for mechanical, dosimetric, and imaging performance of such systems and recommendation of the QA procedures, particularly for a 1.5T MR-linac device. An overview of the system design and considerations for QA measurements, particularly the effect of the machine geometry and magnetic field on the radiation beam measurements is given. The effect of the magnetic field on measurement equipment and methods is reviewed to provide a foundation for interpreting measurement results and devising appropriate methods. And lastly, a consensus overview of recommended QA, appropriate methods, and tolerances is provided based on conventional QA protocols. The aim of this consensus work was to provide a foundation for QA protocols, comparative studies of system performance, and for future development of QA protocols and measurement methods.


Subject(s)
Quality Assurance, Health Care , Radiotherapy, Image-Guided , Magnetic Fields , Magnetic Resonance Imaging , Particle Accelerators , Phantoms, Imaging , Radiometry , Radiotherapy Planning, Computer-Assisted
2.
Phys Med Biol ; 66(11)2021 05 26.
Article in English | MEDLINE | ID: mdl-32217828

ABSTRACT

We developed and validated a dedicated small field back-projection portal dosimetry model for pretreatment andin vivoverification of stereotactic plans entailing small unflattened photon beams. For this purpose an aSi-EPID was commissioned as a small field dosimeter. Small field output factors for 6 MV FFF beams were measured using the PTW microDiamond detector and the Agility 160-leaf MLC from Elekta. The back-projection algorithm developed in our department was modified to better model the small field physics. The feasibility of small field portal dosimetry was validated via absolute point dose differences w.r.t. small static beams, and 5 hypofractionated stereotactic VMAT clinical plans measured with the OCTAVIUS 1000 SRS array dosimeter and computed with the treatment planning system Pinnacle v16.2. Dose reconstructions using the currently clinically applied back-projection model were also computed for comparison. We found that the latter yields underdosage of about -8% for square beams with cross section near 10 mm x 10 mm and about -6% for VMAT treatments with PTV volumes smaller than about 2cm3. With the methods described in this work such errors can be reduced to less than the ±3.0% recommendations for clinical use. Our results indicate that aSi-EPIDs can be used as accurate small field radiation dosimeters, offering advantages over point dose detectors, the correct positioning and orientation of which is challenging for routine clinical QA.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Algorithms , Imaging, Three-Dimensional , Particle Accelerators , Radiometry , Radiotherapy Dosage
3.
J Appl Clin Med Phys ; 20(6): 79-90, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31083776

ABSTRACT

PURPOSE: Despite their availability and simplicity of use, Electronic Portal Imaging Devices (EPIDs) have not yet replaced detector arrays for patient specific QA in 3D. The purpose of this study is to perform a large scale dosimetric evaluation of transit and non-transit EPID dosimetry against absolute dose measurements in 3D. METHODS: After evaluating basic dosimetric characteristics of the EPID and two detector arrays (Octavius 1500 and Octavius 1000SRS ), 3D dose distributions for 68 VMAT arcs, and 10 IMRT plans were reconstructed within the same phantom geometry using transit EPID dosimetry, non-transit EPID dosimetry, and the Octavius 4D system. The reconstructed 3D dose distributions were directly compared by γ-analysis (2L2 = 2% local/2 mm and 3G2 = 3% global/2 mm, 50% isodose) and by the percentage difference in median dose to the high dose volume (%∆HDVD 50 ). RESULTS: Regarding dose rate dependency, dose linearity, and field size dependence, the agreement between EPID dosimetry and the two detector arrays was found to be within 1.0%. In the 2L2 γ-comparison with Octavius 4D dose distributions, the average γ-pass rate value was 92.2 ± 5.2%(1SD) and 94.1 ± 4.3%(1SD) for transit and non-transit EPID dosimetry, respectively. 3G2 γ-pass rate values were higher than 95% in 150/156 cases. %∆HDVD 50 values were within 2% in 134/156 cases and within 3% in 155/156 cases. With regard to the clinical classification of alerts, 97.5% of the treatments were equally classified by EPID dosimetry and Octavius 4D. CONCLUSION: Transit and non-transit EPID dosimetry are equivalent in dosimetric terms to conventional detector arrays for patient specific QA. Non-transit 3D EPID dosimetry can be readily used for pre-treatment patient specific QA of IMRT and VMAT, eliminating the need of phantom positioning.


Subject(s)
Algorithms , Particle Accelerators/instrumentation , Phantoms, Imaging , Quality Assurance, Health Care/standards , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Radiotherapy Dosage
4.
Phys Med Biol ; 63(4): 045023, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29461974

ABSTRACT

Recently flattening filter free (FFF) beams became available for application in modern radiotherapy. There are several advantages of FFF beams over conventional flattening filtered (cFF) beams, however differences in beam spectra at the point of interest in a phantom potentially affect the ion chamber response. Beams are also non-uniform over the length of a typical reference ion chamber and recombination is usually larger. Despite several studies describing FFF beam characteristics, only a limited number of studies investigated their effect on k Q factors. Some of those studies predicted significant discrepancies in k Q factors (0.4% up to 1.0%) if TPR20,10 based codes of practice (CoPs) were to be used. This study addresses the question to which extent k Q factors, based on a TPR20,10 CoP, can be applied in clinical reference dosimetry. It is the first study that compares k Q factors measured directly with an absorbed dose to water primary standard in FFF-cFF pairs of clinical photon beams. This was done with a transportable water calorimeter described elsewhere. The measurements corrected for recombination and beam radial non-uniformity were performed in FFF-cFF beam pairs at 6 MV and 10 MV of an Elekta Versa HD for a selection of three different Farmer-type ion chambers (eight serial numbers). The ratio of measured k Q factors of the FFF-cFF beam pairs were compared with the TPR20,10 CoPs of the NCS and IAEA and the %dd(10) x CoP of the AAPM. For the TPR20,10 based CoPs differences less than 0.23% were found in k Q factors between the corresponding FFF-cFF beams with standard uncertainties smaller than 0.35%, while for the %dd(10) x these differences were smaller than 0.46% and within the expanded uncertainty of the measurements. Based on the measurements made with the equipment described in this study the authors conclude that the k Q factors provided by the NCS-18 and IAEA TRS-398 codes of practice can be applied for flattening filter free beams without additional correction. However, existing codes of practice cannot be applied ignoring the significant volume averaging effect of the FFF beams over the ion chamber cavity. For this a corresponding volume averaging correction must be applied.


Subject(s)
Calorimetry/methods , Photons , Radiation Dosimeters/standards , Calorimetry/instrumentation , Phantoms, Imaging , Radiometry/instrumentation , Radiometry/methods , Radiotherapy Dosage , Uncertainty
5.
Phys Imaging Radiat Oncol ; 5: 44-51, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33458368

ABSTRACT

BACKGROUND AND PURPOSE: External dosimetry audits are powerful quality assurance instruments for radiotherapy. The aim of this study was to implement an electron dosimetry audit based on a contemporary code of practice within the requirements for calibration laboratories performing proficiency tests. This involved the determination of suitable acceptance criteria based on thorough uncertainty analyses. MATERIALS AND METHODS: Subject of the audit was the determination of absorbed dose to water, D w, and the beam quality specifier, R 50,dos. Fifteen electron beams were measured in four institutes according to the Belgian-Dutch code of practice for high-energy electron beams. The expanded uncertainty (k = 2) for the D w values was 3.6% for a Roos chamber calibrated in 60Co and 3.2% for a Roos chamber cross-calibrated against a Farmer chamber. The expanded uncertainty for the beam quality specifier, R 50,dos, was 0.14 cm. The audit acceptance levels were based on the expanded uncertainties for the comparison results and estimated to be 2.4%. RESULTS: The audit was implemented and validated successfully. All D w audit results were satisfactory with differences in D w values mostly smaller than 0.5% and always smaller than 1%. Except for one, differences in R 50,dos were smaller than 0.2 cm and always smaller than 0.3 cm. CONCLUSIONS: An electron dosimetry audit based on absorbed dose to water and present-day requirements for calibration laboratories performing proficiency tests was successfully implemented. It proved international traceability of the participants value with an uncertainty better than 3.6% (k = 2).

6.
Radiother Oncol ; 117(3): 407-11, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26631644

ABSTRACT

PURPOSE: To systematically evaluate machine specific quality assurance (QA) for volumetric modulated arc therapy (VMAT) based on log files by applying a dynamic benchmark plan. METHODS AND MATERIALS: A VMAT benchmark plan was created and tested on 18 Elekta linacs (13 MLCi or MLCi2, 5 Agility) at 4 different institutions. Linac log files were analyzed and a delivery robustness index was introduced. For dosimetric measurements an ionization chamber array was used. Relative dose deviations were assessed by mean gamma for each control point and compared to the log file evaluation. RESULTS: Fourteen linacs delivered the VMAT benchmark plan, while 4 linacs failed by consistently terminating the delivery. The mean leaf error (±1SD) was 0.3±0.2 mm for all linacs. Large MLC maximum errors up to 6.5 mm were observed at reversal positions. Delivery robustness index accounting for MLC position correction (0.8-1.0) correlated with delivery time (80-128 s) and depended on dose rate performance. Dosimetric evaluation indicated in general accurate plan reproducibility with γ(mean)(±1 SD)=0.4±0.2 for 1 mm/1%. However single control point analysis revealed larger deviations and attributed well to log file analysis. CONCLUSION: The designed benchmark plan helped identify linac related malfunctions in dynamic mode for VMAT. Log files serve as an important additional QA measure to understand and visualize dynamic linac parameters.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Particle Accelerators , Quality Assurance, Health Care , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Intensity-Modulated/standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...