Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4716, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543677

ABSTRACT

The inability of adult human cardiomyocytes to proliferate is an obstacle to efficient cardiac regeneration after injury. Understanding the mechanisms that drive postnatal cardiomyocytes to switch to a non-regenerative state is therefore of great significance. Here we show that Arid1a, a subunit of the switching defective/sucrose non-fermenting (SWI/SNF) chromatin remodeling complex, suppresses postnatal cardiomyocyte proliferation while enhancing maturation. Genome-wide transcriptome and epigenome analyses revealed that Arid1a is required for the activation of a cardiomyocyte maturation gene program by promoting DNA access to transcription factors that drive cardiomyocyte maturation. Furthermore, we show that ARID1A directly binds and inhibits the proliferation-promoting transcriptional coactivators YAP and TAZ, indicating ARID1A sequesters YAP/TAZ from their DNA-binding partner TEAD. In ischemic heart disease, Arid1a expression is enhanced in cardiomyocytes of the border zone region. Inactivation of Arid1a after ischemic injury enhanced proliferation of border zone cardiomyocytes. Our study illuminates the pivotal role of Arid1a in cardiomyocyte maturation, and uncovers Arid1a as a crucial suppressor of cardiomyocyte proliferation.


Subject(s)
Myocytes, Cardiac , Signal Transduction , Humans , Myocytes, Cardiac/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA/metabolism , Cell Proliferation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
2.
Stem Cell Reports ; 18(3): 749-764, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36868229

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive disease characterized by electrophysiological and structural remodeling of the ventricles. However, the disease-causing molecular pathways, as a consequence of desmosomal mutations, are poorly understood. Here, we identified a novel missense mutation within desmoplakin in a patient clinically diagnosed with ACM. Using CRISPR-Cas9, we corrected this mutation in patient-derived human induced pluripotent stem cells (hiPSCs) and generated an independent knockin hiPSC line carrying the same mutation. Mutant cardiomyocytes displayed a decline in connexin 43, NaV1.5, and desmosomal proteins, which was accompanied by a prolonged action potential duration. Interestingly, paired-like homeodomain 2 (PITX2), a transcription factor that acts a repressor of connexin 43, NaV1.5, and desmoplakin, was induced in mutant cardiomyocytes. We validated these results in control cardiomyocytes in which PITX2 was either depleted or overexpressed. Importantly, knockdown of PITX2 in patient-derived cardiomyocytes is sufficient to restore the levels of desmoplakin, connexin 43, and NaV1.5.


Subject(s)
Cardiomyopathies , Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Desmoplakins/genetics , Desmoplakins/metabolism , Induced Pluripotent Stem Cells/metabolism , Mutation
3.
Cardiovasc Res ; 119(2): 477-491, 2023 03 31.
Article in English | MEDLINE | ID: mdl-35576477

ABSTRACT

AIMS: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that is characterized by progressive loss of myocardium that is replaced by fibro-fatty cells, arrhythmias, and sudden cardiac death. While myocardial degeneration and fibro-fatty replacement occur in specific locations, the underlying molecular changes remain poorly characterized. Here, we aim to delineate local changes in gene expression to identify new genes and pathways that are relevant for specific remodelling processes occurring during ACM. METHODS AND RESULTS: Using Tomo-Seq, genome-wide transcriptional profiling with high spatial resolution, we created transmural epicardial-to-endocardial gene expression atlases of explanted ACM hearts to gain molecular insights into disease-driving processes. This enabled us to link gene expression profiles to the different regional remodelling responses and allowed us to identify genes that are potentially relevant for disease progression. In doing so, we identified distinct gene expression profiles marking regions of cardiomyocyte degeneration and fibro-fatty remodelling and revealed Zinc finger and BTB domain-containing protein 11 (ZBTB11) to be specifically enriched at sites of active fibro-fatty replacement of myocardium. Immunohistochemistry indicated ZBTB11 to be induced in cardiomyocytes flanking fibro-fatty areas, which could be confirmed in multiple cardiomyopathy patients. Forced overexpression of ZBTB11 induced autophagy and cell death-related gene programmes in human cardiomyocytes, leading to increased apoptosis. CONCLUSION: Our study shows the power of Tomo-Seq to unveil new molecular mechanisms in human cardiomyopathy and uncovers ZBTB11 as a novel driver of cardiomyocyte loss.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Humans , Arrhythmias, Cardiac/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Transcriptome
4.
Nat Cardiovasc Res ; 2(12): 1262-1276, 2023.
Article in English | MEDLINE | ID: mdl-38665939

ABSTRACT

Arrhythmogenic cardiomyopathy is a severe cardiac disorder characterized by lethal arrhythmias and sudden cardiac death, with currently no effective treatment. Plakophilin 2 (PKP2) is the most frequently affected gene. Here we show that adeno-associated virus (AAV)-mediated delivery of PKP2 in PKP2c.2013delC/WT induced pluripotent stem cell-derived cardiomyocytes restored not only cardiac PKP2 levels but also the levels of other junctional proteins, found to be decreased in response to the mutation. PKP2 restoration improved sodium conduction, indicating rescue of the arrhythmic substrate in PKP2 mutant induced pluripotent stem cell-derived cardiomyocytes. Additionally, it enhanced contractile function and normalized contraction kinetics in PKP2 mutant engineered human myocardium. Recovery of desmosomal integrity and cardiac function was corroborated in vivo, by treating heterozygous Pkp2c.1755delA knock-in mice. Long-term treatment with AAV9-PKP2 prevented cardiac dysfunction in 12-month-old Pkp2c.1755delA/WT mice, without affecting wild-type mice. These findings encourage clinical exploration of PKP2 gene therapy for patients with PKP2 haploinsufficiency.

5.
Molecules ; 26(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34684887

ABSTRACT

The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.

6.
Sci Transl Med ; 13(612): eabf2750, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34550725

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder often caused by pathogenic variants in desmosomal genes and characterized by progressive fibrotic and fat tissue accumulation in the heart. The cellular origin and responsible molecular mechanisms of fibro-fatty deposits have been a matter of debate, due to limitations in animal models recapitulating this phenotype. Here, we used human-induced pluripotent stem cell (hiPSC)­derived cardiac cultures, single-cell RNA sequencing (scRNA-seq), and explanted human ACM hearts to study the epicardial contribution to fibro-fatty remodeling in ACM. hiPSC-epicardial cells generated from patients with ACM showed spontaneous fibro-fatty cellular differentiation that was absent in isogenic controls. This was further corroborated upon siRNA-mediated targeting of desmosomal genes in hiPSC-epicardial cells generated from healthy donors. scRNA-seq analysis identified the transcription factor TFAP2A (activating enhancer-binding protein 2 alpha) as a key trigger promoting this process. Gain- and loss-of-function studies on hiPSC-epicardial cells and primary adult epicardial-derived cells demonstrated that TFAP2A mediated epicardial differentiation through enhancing epithelial-to-mesenchymal transition (EMT). Furthermore, examination of explanted hearts from patients with ACM revealed epicardial activation and expression of TFAP2A in the subepicardial mesenchyme. These data suggest that TFAP2A-mediated epicardial EMT underlies fibro-fatty remodeling in ACM, a process amenable to therapeutic intervention.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cell Differentiation , Humans
7.
Commun Biol ; 4(1): 146, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514846

ABSTRACT

The efficiency of the repair process following ischemic cardiac injury is a crucial determinant for the progression into heart failure and is controlled by both intra- and intercellular signaling within the heart. An enhanced understanding of this complex interplay will enable better exploitation of these mechanisms for therapeutic use. We used single-cell transcriptomics to collect gene expression data of all main cardiac cell types at different time-points after ischemic injury. These data unveiled cellular and transcriptional heterogeneity and changes in cellular function during cardiac remodeling. Furthermore, we established potential intercellular communication networks after ischemic injury. Follow up experiments confirmed that cardiomyocytes express and secrete elevated levels of beta-2 microglobulin in response to ischemic damage, which can activate fibroblasts in a paracrine manner. Collectively, our data indicate phase-specific changes in cellular heterogeneity during different stages of cardiac remodeling and allow for the identification of therapeutic targets relevant for cardiac repair.


Subject(s)
Gene Expression Profiling , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/metabolism , Single-Cell Analysis , Transcriptome , Ventricular Remodeling , Wound Healing , beta 2-Microglobulin/genetics , Animals , Cell Line , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/pathology , Paracrine Communication , Time Factors , beta 2-Microglobulin/metabolism
8.
Cardiovasc Res ; 117(6): 1532-1545, 2021 05 25.
Article in English | MEDLINE | ID: mdl-32717063

ABSTRACT

AIMS: Pathological cardiac remodelling is characterized by cardiomyocyte (CM) hypertrophy and fibroblast activation, which can ultimately lead to maladaptive hypertrophy and heart failure (HF). Genome-wide expression analysis on heart tissue has been instrumental for the identification of molecular mechanisms at play. However, these data were based on signals derived from all cardiac cell types. Here, we aimed for a more detailed view on molecular changes driving maladaptive CM hypertrophy to aid in the development of therapies to reverse pathological remodelling. METHODS AND RESULTS: Utilizing CM-specific reporter mice exposed to pressure overload by transverse aortic banding and CM isolation by flow cytometry, we obtained gene expression profiles of hypertrophic CMs in the more immediate phase after stress, and CMs showing pathological hypertrophy. We identified subsets of genes differentially regulated and specific for either stage. Among the genes specifically up-regulated in the CMs during the maladaptive phase we found known stress markers, such as Nppb and Myh7, but additionally identified a set of genes with unknown roles in pathological hypertrophy, including the platelet isoform of phosphofructokinase (PFKP). Norepinephrine-angiotensin II treatment of cultured human CMs induced the secretion of N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) and recapitulated the up-regulation of these genes, indicating conservation of the up-regulation in failing CMs. Moreover, several genes induced during pathological hypertrophy were also found to be increased in human HF, with their expression positively correlating to the known stress markers NPPB and MYH7. Mechanistically, suppression of Pfkp in primary CMs attenuated stress-induced gene expression and hypertrophy, indicating that Pfkp is an important novel player in pathological remodelling of CMs. CONCLUSION: Using CM-specific transcriptomic analysis, we identified novel genes induced during pathological hypertrophy that are relevant for human HF, and we show that PFKP is a conserved failure-induced gene that can modulate the CM stress response.


Subject(s)
Cardiomegaly/genetics , Gene Expression Profiling , Myocytes, Cardiac/metabolism , Transcriptome , Ventricular Remodeling/genetics , Animals , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cells, Cultured , Disease Models, Animal , Fibrosis , Gene Expression Regulation , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Cardiac/pathology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Phosphofructokinase-1, Type C/genetics , Phosphofructokinase-1, Type C/metabolism
9.
Curr Pharm Biotechnol ; 18(4): 309-317, 2017.
Article in English | MEDLINE | ID: mdl-28155605

ABSTRACT

BACKGROUND: Myogenic progenitor cells (activated satellite cells) are able to express both HGF and its receptor cMet. After muscle injury, HGF-Met stimulation promotes activation and primary division of satellite cells. MAGIC-F1 (Met-Activating Genetically Improved Chimeric Factor-1) is an engineered protein that contains two human Met-binding domains that promotes muscle hypertrophy. MAGIC-F1 protects myogenic precursors against apoptosis and increases their fusion ability enhancing muscle differentiation. Hemizygous and homozygous Magic-F1 transgenic mice displayed constitutive muscle hypertrophy. METHODS: Here we describe microarray analysis on Magic-F1 myogenic progenitor cells showing an altered gene signatures on muscular hypertrophy and angiogenesis compared to wild-type cells. In addition, we performed a functional analysis on Magic-F1+/+ transgenic mice versus controls using treadmill test. RESULTS: We demonstrated that Magic-F1+/+ mice display an increase in muscle mass and cross-sectional area leading to an improvement in running performance. Moreover, the presence of MAGIC-F1 affected positively the vascular network, increasing the vessel number in fast twitch fibers. Finally, the gene expression profile analysis of Magic-F1+/+ satellite cells evidenced transcriptomic changes in genes involved in the control of muscle growth, development and vascularisation. CONCLUSION: We showed that MAGIC-F1-induced muscle hypertrophy affects positively vascular network, increasing vessel number in fast twitch fibers. This was due to unique features of mammalian skeletal muscle and its remarkable ability to adapt promptly to different physiological demands by modulating the gene expression profile in myogenic progenitors.


Subject(s)
Muscle Development/physiology , Muscle, Skeletal/blood supply , Neovascularization, Physiologic/physiology , Proto-Oncogene Proteins c-met/agonists , Recombinant Proteins/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cells, Cultured , Exercise Test , Female , Gene Expression , Humans , Hypertrophy , Mice , Mice, Transgenic , Muscle Development/genetics , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Neovascularization, Physiologic/genetics , Recombinant Proteins/genetics
10.
Stem Cell Reports ; 8(2): 318-333, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28089671

ABSTRACT

In early mouse pre-implantation development, primitive endoderm (PrE) precursors are platelet-derived growth factor receptor alpha (PDGFRα) positive. Here, we demonstrated that cultured mouse embryonic stem cells (mESCs) express PDGFRα heterogeneously, fluctuating between a PDGFRα+ (PrE-primed) and a platelet endothelial cell adhesion molecule 1 (PECAM1)-positive state (epiblast-primed). The two surface markers can be co-detected on a third subpopulation, expressing epiblast and PrE determinants (double-positive). In vitro, these subpopulations differ in their self-renewal and differentiation capability, transcriptional and epigenetic states. In vivo, double-positive cells contributed to epiblast and PrE, while PrE-primed cells exclusively contributed to PrE derivatives. The transcriptome of PDGFRα+ subpopulations differs from previously described subpopulations and shows similarities with early/mid blastocyst cells. The heterogeneity did not depend on PDGFRα but on leukemia inhibitory factor and fibroblast growth factor signaling and DNA methylation. Thus, PDGFRα+ cells represent the in vitro counterpart of in vivo PrE precursors, and their selection from cultured mESCs yields pure PrE precursors.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Endoderm/cytology , Receptor, Platelet-Derived Growth Factor alpha/genetics , Angiopoietin-1 , Animals , Biomarkers , Blastocyst/cytology , Blastocyst/metabolism , Cell Differentiation/genetics , Cell Line , Cells, Cultured , DNA Methylation , Embryonic Development/genetics , Endoderm/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Mice , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction
11.
Nucleic Acids Res ; 44(2): 744-60, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26682797

ABSTRACT

Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes.


Subject(s)
DNA Transposable Elements/genetics , Dystrophin/genetics , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/pathology , Animals , Cell Differentiation , Cells, Cultured , Dogs , Dystrophin/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Male , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Transfection
12.
Biochem Biophys Res Commun ; 464(3): 755-61, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26164231

ABSTRACT

Met Activating Genetically Improved Chimeric Factor 1 (Magic-F1) is a human recombinant protein, derived from dimerization of the receptor-binding domain of hepatocyte growth factor. Previous experiments demonstrate that in transgenic mice, the skeletal muscle specific expression of Magic-F1 can induce a constitutive muscular hypertrophy, improving running performance and accelerating muscle regeneration after injury. In order to evaluate the therapeutic potential of Magic-F1, we tested its effect on multipotent and pluripotent stem cells. In murine mesoangioblasts (adult vessel-associated stem cells), the presence of Magic-F1 did not alter their osteogenic, adipogenic or smooth muscle differentiation ability. However, when analyzing their myogenic potential, mesoangioblasts expressing Magic-F1 differentiated spontaneously into myotubes. Finally, Magic-F1 inducible cassette was inserted into a murine embryonic stem cell line by homologous recombination. When embryonic stem cells were subjected to myogenic differentiation, the presence of Magic-F1 resulted in the upregulation of Pax3 and Pax7 that enhanced the myogenic commitment of transgenic pluripotent stem cells. Taken together our results candidate Magic-F1 as a potent myogenic stimulator, able to enhance muscular differentiation from both adult and pluripotent stem cells.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/physiology , Muscle Development/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Mice , Mice, Transgenic , Muscle Development/genetics , PAX3 Transcription Factor , PAX7 Transcription Factor/genetics , Paired Box Transcription Factors/genetics , Up-Regulation
13.
PLoS One ; 9(1): e84618, 2014.
Article in English | MEDLINE | ID: mdl-24427291

ABSTRACT

Caveolin-1 (Cav-1) can ambiguously behave as either tumor suppressor or oncogene depending on its phosphorylation state and the type of cancer. In this study we show that Cav-1 was phosphorylated on tyrosine 14 (pCav-1) by Src-kinase family members in various human cell lines and primary mouse cultures of rhabdomyosarcoma (RMS), the most frequent soft-tissue sarcoma affecting childhood. Cav-1 overexpression in the human embryonal RD or alveolar RH30 cells yielded increased pCav-1 levels and reinforced the phosphorylation state of either ERK or AKT kinase, respectively, in turn enhancing in vitro cell proliferation, migration, invasiveness and chemoresistance. In contrast, reducing the pCav-1 levels by administration of a Src-kinase inhibitor or through targeted Cav-1 silencing counteracted the malignant in vitro phenotype of RMS cells. Consistent with these results, xenotransplantation of Cav-1 overexpressing RD cells into nude mice resulted in substantial tumor growth in comparison to control cells. Taken together, these data point to pCav-1 as an important and therapeutically valuable target for overcoming the progression and multidrug resistance of RMS.


Subject(s)
Caveolin 1/genetics , Drug Resistance, Neoplasm/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Animals , Caveolin 1/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gene Expression , Heterografts , Humans , Mice , Phosphorylation , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Rhabdomyosarcoma/metabolism , Tumor Burden/genetics , src-Family Kinases/metabolism
14.
Cell Mol Life Sci ; 71(4): 615-27, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23949444

ABSTRACT

Regenerative medicine for skeletal and cardiac muscles still constitutes a fascinating and ambitious frontier. In this perspective, understanding the possibilities of intrinsic cell plasticity, present in post-natal muscles, is vital to define and improve novel therapeutic strategies for acute and chronic diseases. In addition, many somatic stem cells are now crossing the boundaries of basic/translational research to enter the first clinical trials. However, it is still an open question whether a lineage switch between skeletal and cardiac adult myogenesis is possible. Therefore, this review focuses on resident somatic stem cells of post-natal skeletal and cardiac muscles and their plastic potential toward the two lineages. Furthermore, examples of myogenic lineage switch in adult stem cells are also reported and discussed.


Subject(s)
Mesoderm/cytology , Muscle, Skeletal/cytology , Myocardium/cytology , Stem Cells/cytology , Animals , Embryonic Development , Heart/physiology , Humans , Muscle Development , Muscle, Skeletal/physiology , Regeneration
15.
Methods Mol Biol ; 798: 65-76, 2012.
Article in English | MEDLINE | ID: mdl-22130831

ABSTRACT

Mesoangioblasts (MABs) are mesoderm-derived stem cells, associated with small vessels and originally described in the mouse embryonic dorsal aorta. Similar though not identical cells have been later identified and characterized from postnatal small vessels of skeletal muscle and heart. They have in common the expression of pericyte markers, the anatomical location, the ability to self-renew in culture, and to differentiate into various types of mesodermal lineages upon proper culture conditions. Currently, the developmental origin of MABs and the relationship with other muscle stem cells are not understood in detail and are the subject of active research. This chapter provides an outline of the latest techniques for isolation and characterization of adult MABs from human and mouse skeletal muscles.


Subject(s)
Cell Separation/methods , Muscle, Skeletal/cytology , Stem Cells/cytology , Animals , Antigens, Differentiation/metabolism , Cell Differentiation , Cell Line , Coculture Techniques , Cryopreservation/methods , Flow Cytometry/methods , Humans , Mice , Stem Cells/metabolism
16.
J Muscle Res Cell Motil ; 30(7-8): 243-53, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20195710

ABSTRACT

Skeletal muscle hypertrophy is a result of increased load, such as functional and stretch-overload. Activation of satellite cells and proliferation, differentiation and fusion are required for hypertrophy of overloaded skeletal muscles. On the contrary, a dramatic loss of skeletal muscle mass determines atrophy settings. The epigenetic changes involved in gene regulation at DNA and chromatin level are critical for the opposing phenomena, muscle growth and atrophy. Physiological properties of skeletal muscle tissue play a fundamental role in health and disease since it is the most abundant tissue in mammals. In fact, protein synthesis and degradation are finely modulated to maintain an appropriate muscle mass. When the molecular signaling is altered muscle wasting and weakness occurred, and this happened in most common inherited and acquired disorders such as muscular dystrophies, cachexia, and age-related wasting. To date, there is no accepted treatment to improve muscle size and strength, and these conditions pose a considerable anxiety to patients as well as to public health. Several molecules, including Magic-F1, myostatin inhibitor, IGF, glucocorticoids and microRNAs are currently investigated to interfere positively in the blueprint of skeletal muscle growth and regeneration.


Subject(s)
Cell Differentiation/physiology , Muscle Development , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Somatomedins/metabolism , Animals , Atrophy/metabolism , Atrophy/pathology , Cachexia/metabolism , Cachexia/pathology , Cells/metabolism , Gene Expression Regulation , Humans , Hypertrophy/metabolism , Hypertrophy/pathology , Muscle, Skeletal/pathology , Muscles/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Musculoskeletal System/metabolism , Myoblasts/metabolism , Myostatin/metabolism , Regeneration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...