Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Mol Pharmacol ; 96(2): 259-271, 2019 08.
Article in English | MEDLINE | ID: mdl-31182542

ABSTRACT

Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade. SIGNIFICANCE STATEMENT: The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.


Subject(s)
Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Ivabradine/pharmacology , Membrane Lipids/metabolism , Binding Sites , Ether-A-Go-Go Potassium Channels/genetics , Humans , Ivabradine/chemistry , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Phenethylamines/pharmacology , Protein Binding , Protein Structure, Tertiary , Sulfonamides/pharmacology
2.
Neurosci Lett ; 700: 70-77, 2019 05 01.
Article in English | MEDLINE | ID: mdl-29758301

ABSTRACT

Human-ether-a-go-go-related channel (hERG) is a voltage gated potassium channel (Kv11.1) abundantly expressed in heart and brain tissues. In addition to playing an important role in mediation of repolarizing K+ currents (IKr) in Action Potential (AP), hERG is notorious for its propensity to interact with various medications. The drug-induced block of K+ currents across hERG channel are strongly associated with dysrhythmic conditions collectively known as drug-induced long-QT-syndrome. The recent availability of the high-resolution Cryo-EM structures for the hERG channel has provided unique opportunity to resolve structural mechanisms involved into the process of voltage-gating of hERG channels, map various roles played by components of ventricular and neuronal membranes and then to connect it to cellular pathways through which diverse chemical compounds might be affecting function of the channel. Specifically, lipids and lipid derivatives such as polyunsaturated fatty acids (PUFAs), ceramides and steroids have been shown to directly interact with the lipid facing amino acids in various Kv channels including hERG. In this review, possible lipophilic pathways of hERG activators and blockers, together with the existence of fenestration windows and effects of PUFAs, ceramides and steroids are explored throughout different sections. Finally, the interplay between long QT inducing drugs and phospholipidosis is briefly discussed.


Subject(s)
ERG1 Potassium Channel/physiology , Lipids/physiology , Ceramides/metabolism , Ceramides/pharmacology , ERG1 Potassium Channel/agonists , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/chemistry , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology , Humans , Long QT Syndrome/etiology , Membrane Lipids/physiology , Molecular Docking Simulation , Signal Transduction , Steroids/metabolism , Steroids/pharmacology
3.
Front Physiol ; 9: 207, 2018.
Article in English | MEDLINE | ID: mdl-29706893

ABSTRACT

IKr is the rapidly activating component of the delayed rectifier potassium current, the ion current largely responsible for the repolarization of the cardiac action potential. Inherited forms of long QT syndrome (LQTS) (Lees-Miller et al., 1997) in humans are linked to functional modifications in the Kv11.1 (hERG) ion channel and potentially life threatening arrhythmias. There is little doubt now that hERG-related component of IKr in the heart depends on the tetrameric (homo- or hetero-) channels formed by two alternatively processed isoforms of hERG, termed hERG1a and hERG1b. Isoform composition (hERG1a- vs. the b-isoform) has recently been reported to alter pharmacologic responses to some hERG blockers and was proposed to be an essential factor pre-disposing patients for drug-induced QT prolongation. Very little is known about the gating and pharmacological properties of two isoforms in heart membranes. For example, how gating mechanisms of the hERG1a channels differ from that of hERG1b is still unknown. The mechanisms by which hERG 1a/1b hetero-tetramers contribute to function in the heart, or what role hERG1b might play in disease are all questions to be answered. Structurally, the two isoforms differ only in the N-terminal region located in the cytoplasm: hERG1b is 340 residues shorter than hERG1a and the initial 36 residues of hERG1b are unique to this isoform. In this study, we combined electrophysiological measurements for HEK cells, kinetics and structural modeling to tease out the individual contributions of each isoform to Action Potential formation and then make predictions about the effects of having various mixture ratios of the two isoforms. By coupling electrophysiological data with computational kinetic modeling, two proposed mechanisms of hERG gating in two homo-tetramers were examined. Sets of data from various experimental stimulation protocols (HEK cells) were analyzed simultaneously and fitted to Markov-chain models (M-models). The minimization procedure presented here, allowed assessment of suitability of different Markov model topologies and the corresponding parameters that describe the channel kinetics. The kinetics modeling pointed to key differences in the gating kinetics that were linked to the full channel structure. Interactions between soluble domains and the transmembrane part of the channel appeared to be critical determinants of the gating kinetics. The structures of the full channel in the open and closed states were compared for the first time using the recent Cryo-EM resolved structure for full open hERG channel and an homology model for the closed state, based on the highly homolog EAG1 channel. Key potential interactions which emphasize the importance of electrostatic interactions between N-PAS cap, S4-S5, and C-linker are suggested based on the structural analysis. The derived kinetic parameters were later used in higher order models of cells and tissue to track down the effect of varying the ratios of hERG1a and hERG1b on cardiac action potentials and computed electrocardiograms. Simulations suggest that the recovery from inactivation of hERG1b may contribute to its physiologic role of this isoform in the action potential. Finally, the results presented here contribute to the growing body of evidence that hERG1b significantly affects the generation of the cardiac Ikr and plays an important role in cardiac electrophysiology. We highlight the importance of carefully revisiting the Markov models previously proposed in order to properly account for the relative abundance of the hERG1 a- and b- isoforms.

4.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt B): 1643-1653, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28847523

ABSTRACT

The rapid development of experimental and computational techniques has changed fundamentally our understanding of cellular-membrane transport. The advent of powerful computers and refined force-fields for proteins, ions, and lipids has expanded the applicability of Molecular Dynamics (MD) simulations. A myriad of cellular responses is modulated through the binding of endogenous and exogenous ligands (e.g. neurotransmitters and drugs, respectively) to ion channels. Deciphering the thermodynamics and kinetics of the ligand binding processes to these membrane proteins is at the heart of modern drug development. The ever-increasing computational power has already provided insightful data on the thermodynamics and kinetics of drug-target interactions, free energies of solvation, and partitioning into lipid bilayers for drugs. This review aims to provide a brief summary about modeling approaches to map out crucial binding pathways with intermediate conformations and free-energy surfaces for drug-ion channel binding mechanisms that are responsible for multiple effects on cellular functions. We will discuss post-processing analysis of simulation-generated data, which are then transformed to kinetic models to better understand the molecular underpinning of the experimental observables under the influence of drugs or mutations in ion channels. This review highlights crucial mathematical frameworks and perspectives on bridging different well-established computational techniques to connect the dynamics and timescales from all-atom MD and free energy simulations of ion channels to the physiology of action potentials in cellular models. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.


Subject(s)
Ion Channels/chemistry , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Neurotransmitter Agents/chemistry , Thermodynamics , Animals , Humans
5.
J Physiol ; 595(14): 4695-4723, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28516454

ABSTRACT

KEY POINTS: This study represents a first step toward predicting mechanisms of sex-based arrhythmias that may lead to important developments in risk stratification and may inform future drug design and screening. We undertook simulations to reveal the conditions (i.e. pacing, drugs, sympathetic stimulation) required for triggering and sustaining reentrant arrhythmias. Using the recently solved cryo-EM structure for the Eag-family channel as a template, we revealed potential interactions of oestrogen with the pore loop hERG mutation (G604S). Molecular models suggest that oestrogen and dofetilide blockade can concur simultaneously in the hERG channel pore. ABSTRACT: Female sex is a risk factor for inherited and acquired long-QT associated torsade de pointes (TdP) arrhythmias, and sympathetic discharge is a major factor in triggering TdP in female long-QT syndrome patients. We used a combined experimental and computational approach to predict 'the perfect storm' of hormone concentration, IKr block and sympathetic stimulation that induces arrhythmia in females with inherited and acquired long-QT. More specifically, we developed mathematical models of acquired and inherited long-QT syndrome in male and female ventricular human myocytes by combining effects of a hormone and a hERG blocker, dofetilide, or hERG mutations. These 'male' and 'female' model myocytes and tissues then were used to predict how various sex-based differences underlie arrhythmia risk in the setting of acute sympathetic nervous system discharge. The model predicted increased risk for arrhythmia in females when acute sympathetic nervous system discharge was applied in the settings of both inherited and acquired long-QT syndrome. Females were predicted to have protection from arrhythmia induction when progesterone is high. Males were protected by the presence of testosterone. Structural modelling points towards two plausible and distinct mechanisms of oestrogen action enhancing torsadogenic effects: oestradiol interaction with hERG mutations in the pore loop containing G604 or with common TdP-related blockers in the intra-cavity binding site. Our study presents findings that constitute the first evidence linking structure to function mechanisms underlying female dominance of arousal-induced arrhythmias.


Subject(s)
Arousal/physiology , Arrhythmias, Cardiac/physiopathology , Models, Biological , Adrenergic beta-Agonists/pharmacology , Animals , Anti-Arrhythmia Agents/pharmacology , Estradiol/pharmacology , Ether-A-Go-Go Potassium Channels/physiology , Female , Guinea Pigs , Isoproterenol/pharmacology , Male , Molecular Docking Simulation , Myocytes, Cardiac/physiology , Phenethylamines/pharmacology , Sex Characteristics , Sulfonamides/pharmacology
6.
Biophys J ; 112(8): 1645-1653, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28445755

ABSTRACT

Ryanodine (Ryd) irreversibly targets ryanodine receptors (RyRs), a family of intracellular calcium release channels essential for many cellular processes ranging from muscle contraction to learning and memory. Little is known of the atomistic details about how Ryd binds to RyRs. In this study, we used all-atom molecular dynamics simulations with both enhanced and bidirectional sampling to gain direct insights into how Ryd interacts with major residues in RyRs that were experimentally determined to be critical for its binding. We found that the pyrrolic ring of Ryd displays preference for the R4892AGGG-F4921 residues in the cavity of RyR1, which explain the effects of the corresponding mutations in RyR2 in experiments. Particularly, the mutant Q4933A (or Q4863A in RyR2) critical for both the gating and Ryd binding not only has significantly less interaction with Ryd than the wild-type, but also yields more space for Ryd and water molecules in the cavity. These results describe clear binding modes of Ryd in the RyR cavity and offer structural mechanisms explaining functional data collected on RyR blockade.


Subject(s)
Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine/metabolism , Animals , Binding Sites , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Protein Structure, Secondary , Ryanodine/chemistry , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics , Thermodynamics , Water/chemistry
7.
Curr Top Med Chem ; 17(23): 2681-2702, 2017.
Article in English | MEDLINE | ID: mdl-28413954

ABSTRACT

The rapid delayed rectifier current IKr is one of the major K+ currents involved in repolarization of the human cardiac action potential. Various inherited or drug-induced forms of the long QT syndrome (LQTS) in humans are linked to functional and structural modifications in the IKr conducting channels. IKr is carried by the potassium channel Kv11.1 encoded by the gene KCNH2 (commonly referred to as human ether-a-go-go-related gene or hERG) [1, 2]. The first necessary step for predicting emergent drug effects on the heart is determining and modeling the binding thermodynamics and kinetics of primary and major off-target drug interactions with subcellular targets. The bulk of drugs that target hERG channels are known to have complex interactions at the atomic scale. Accordingly, one of the goals for this review is to provide comprehensive guide in the universe of computational models aiming to refine our understanding of structure-function relations in Kv11.1 and its isoforms. The special emphasis is placed on the mapping of drug binding sites and tentative mechanisms of channel inhibition and activation by drugs. An overview over recent structural models and mapping of binding sites for blockers and activators of IKr current along with the discussion on agreements and discrepancies among different models is presented. There is an apparent reciprocity or feedback loop between drug binding and action potential of the cardiac myocytes. Thus one has to connect drug binding to a particular receptor so that its functional consequences impact on the action potential duration. The natural pathway is to develop multi-scale models that connect between receptor and cellular scales. The potential for such multi-scale model development is discussed through the lens of common gating models. Accordingly, the second part of this review covers an ongoing development of the kinetic models of gating transitions and cardiac ion currents carried by hERG channels with and without drug bound.


Subject(s)
Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Heart/drug effects , Humans , Models, Molecular
8.
Sci Rep ; 6: 32536, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27731415

ABSTRACT

Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open and open-inactivated states were combined with voltage-clamp experiments to unravel the mechanism(s) of state-dependent blockade. The computations of the free energy profiles associated with the drug block to its binding pocket in the intra-cavitary site display startling differences in the open and open-inactivated states of the channel. It was also found that drug ionization may play a crucial role in preferential targeting to the open-inactivated state of the pore domain. pH-dependent hERG blockade by dofetilie was studied with patch-clamp recordings. The results show that low pH increases the extent and speed of drug-induced block. Both experimental and computational findings indicate that binding to the open-inactivated state is of key importance to our understanding of the dofetilide's mode of action.


Subject(s)
DNA-Binding Proteins/chemistry , ERG1 Potassium Channel/chemistry , Ether-A-Go-Go Potassium Channels/chemistry , Phenethylamines/chemistry , Sulfonamides/chemistry , Binding Sites , DNA-Binding Proteins/genetics , ERG1 Potassium Channel/genetics , Electrophysiology , Ether-A-Go-Go Potassium Channels/genetics , Humans , Hydrogen-Ion Concentration , Mutation , Patch-Clamp Techniques , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacology , Protein Conformation
10.
J Mol Cell Cardiol ; 85: 71-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25986146

ABSTRACT

In Europe, ivabradine has recently been approved to treat patients with angina who have intolerance to beta blockers and/or heart failure. Ivabradine is considered to act specifically on the sinoatrial node by inhibiting the If current (the funny current) to slow automaticity. However, in vitro studies show that ivabradine prolongs phase 3 repolarization in ventricular tissue. No episodes of Torsades de Pointes have been reported in randomized clinical studies. The objective of this study is to assess whether ivabradine blocked the hERG1 current. In the present study we discovered that ivabradine prolongs action potential and blocks the hERG current over a range of concentrations overlapping with those required to block HCN4. Ivabradine produced tonic, rather than use-dependent block. The mutation Y652A significantly suppressed pharmacologic block of hERG by ivabradine. Disruption of C-type inactivation also suppressed block of hERG1 by ivabradine. Molecular docking and molecular dynamics simulations indicate that ivabradine may access the inner cavity of the hERG1 via a lipophilic route and has a well-defined binding site in the closed state of the channel. Structural organization of the binding pockets for ivabradine is discussed. Ivabradine blocks hERG and prolongs action potential duration. Our study is potentially important because it indicates the need for active post marketing surveillance of ivabradine. Importantly, proarrhythmia of a number of other drugs has only been discovered during post marketing surveillance.


Subject(s)
Benzazepines/pharmacology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Myocytes, Cardiac/physiology , Potassium Channel Blockers/pharmacology , Action Potentials , Animals , Benzazepines/chemistry , Binding Sites , Dose-Response Relationship, Drug , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/chemistry , Humans , Inhibitory Concentration 50 , Ivabradine , Lipid Bilayers/chemistry , Mice , Molecular Docking Simulation , Myocytes, Cardiac/drug effects , Potassium Channel Blockers/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary
11.
Biophys J ; 108(6): 1400-1413, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25809253

ABSTRACT

Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (-34 ± 4 mV) is similar to wild-type (WT) (-37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (-131 ± 4 mV for K525C and -120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed.


Subject(s)
Cresols/metabolism , Cresols/pharmacology , Ether-A-Go-Go Potassium Channels/metabolism , Phenylurea Compounds/metabolism , Phenylurea Compounds/pharmacology , Animals , Binding Sites , Cell Line , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/genetics , Fluorometry , Humans , Membrane Potentials/physiology , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Oocytes , Patch-Clamp Techniques , Protein Structure, Secondary , Transfection , Xenopus laevis
12.
Biophys J ; 108(6): 1414-1424, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25809254

ABSTRACT

Congenital and acquired (drug-induced) forms of the human long-QT syndrome are associated with alterations in Kv11.1 (hERG) channel-controlled repolarizing IKr currents of cardiac action potentials. A mandatory drug screen implemented by many countries led to a discovery of a large group of small molecules that can activate hERG currents and thus may act as potent antiarrhythmic agents. Despite significant progress in identification of channel activators, little is known about their mechanism of action. A combination of electrophysiological studies with molecular and kinetic modeling was used to examine the mechanism of a model activator (NS1643) action on the hERG channel and its L529I mutant. The L529I mutant has gating dynamics similar to that of wild-type while its response to application of NS1643 is markedly different. We propose a mechanism compatible with experiments in which the model activator binds to the closed (C3) and open states (O). We suggest that NS1643 is affecting early gating transitions, probably during movements of the voltage sensor that precede the opening of the activation gate.


Subject(s)
Cresols/pharmacology , Ether-A-Go-Go Potassium Channels/metabolism , Membrane Transport Modulators/pharmacology , Models, Molecular , Phenylurea Compounds/pharmacology , Cell Line , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/genetics , Humans , Kinetics , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mutation , Patch-Clamp Techniques , Transfection
13.
PLoS One ; 9(9): e105553, 2014.
Article in English | MEDLINE | ID: mdl-25191697

ABSTRACT

One of the main culprits in modern drug discovery is apparent cardiotoxicity of many lead-candidates via inadvertent pharmacologic blockade of K+, Ca2+ and Na+ currents. Many drugs inadvertently block hERG1 leading to an acquired form of the Long QT syndrome and potentially lethal polymorphic ventricular tachycardia. An emerging strategy is to rely on interventions with a drug that may proactively activate hERG1 channels reducing cardiovascular risks. Small molecules-activators have a great potential for co-therapies where the risk of hERG-related QT prolongation is significant and rehabilitation of the drug is impractical. Although a number of hERG1 activators have been identified in the last decade, their binding sites, functional moieties responsible for channel activation and thus mechanism of action, have yet to be established. Here, we present a proof-of-principle study that combines de-novo drug design, molecular modeling, chemical synthesis with whole cell electrophysiology and Action Potential (AP) recordings in fetal mouse ventricular myocytes to establish basic chemical principles required for efficient activator of hERG1 channel. In order to minimize the likelihood that these molecules would also block the hERG1 channel they were computationally engineered to minimize interactions with known intra-cavitary drug binding sites. The combination of experimental and theoretical studies led to identification of functional elements (functional groups, flexibility) underlying efficiency of hERG1 activators targeting binding pocket located in the S4-S5 linker, as well as identified potential side-effects in this promising line of drugs, which was associated with multi-channel targeting of the developed drugs.


Subject(s)
Drug Design , Ether-A-Go-Go Potassium Channels/chemistry , Models, Molecular , Action Potentials/drug effects , Binding Sites , Cresols/chemical synthesis , Cresols/chemistry , Cresols/pharmacology , Databases, Pharmaceutical , Dose-Response Relationship, Drug , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/agonists , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Ligands , Molecular Conformation , Molecular Docking Simulation , Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Protein Binding , Small Molecule Libraries
14.
Biophys Rev ; 6(1): 27-46, 2014 Mar.
Article in English | MEDLINE | ID: mdl-28509962

ABSTRACT

Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol-disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways.

15.
Biochim Biophys Acta ; 1834(9): 1722-38, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23470499

ABSTRACT

In this work we review the application of classical and quantum-mechanical atomistic computer simulation tools to the investigation of small ligand interaction with globins. In the first part, studies of ligand migration, with its connection to kinetic association rate constants (kon), are presented. In the second part, we review studies for a variety of ligands such as O2, NO, CO, HS(-), F(-), and NO2(-) showing how the heme structure, proximal effects, and the interactions with the distal amino acids can modulate protein ligand binding. The review presents mainly results derived from our previous works on the subject, in the context of other theoretical and experimental studies performed by others. The variety and extent of the presented data yield a clear example of how computer simulation tools have, in the last decade, contributed to our deeper understanding of small ligand interactions with globins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Subject(s)
Computer Simulation , Globins/chemistry , Globins/metabolism , Animals , Humans , Ligands , Quantum Theory
16.
Proc Natl Acad Sci U S A ; 109(39): 15722-7, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-23019356

ABSTRACT

The DNA nucleotide thymidylate is synthesized by the enzyme thymidylate synthase, which catalyzes the reductive methylation of deoxyuridylate using the cofactor methylene-tetrahydrofolate (CH(2)H(4)folate). Most organisms, including humans, rely on the thyA- or TYMS-encoded classic thymidylate synthase, whereas, certain microorganisms, including all Rickettsia and other pathogens, use an alternative thyX-encoded flavin-dependent thymidylate synthase (FDTS). Although several crystal structures of FDTSs have been reported, the absence of a structure with folates limits understanding of the molecular mechanism and the scope of drug design for these enzymes. Here we present X-ray crystal structures of FDTS with several folate derivatives, which together with mutagenesis, kinetic analysis, and computer modeling shed light on the cofactor binding and function. The unique structural data will likely facilitate further elucidation of FDTSs' mechanism and the design of structure-based inhibitors as potential leads to new antimicrobial drugs.


Subject(s)
Bacterial Proteins/chemistry , Folic Acid/chemistry , Rickettsia/enzymology , Thymidylate Synthase/chemistry , Binding Sites , Crystallography, X-Ray , Protein Structure, Tertiary
17.
J Am Chem Soc ; 134(3): 1738-45, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22171795

ABSTRACT

A significant contemporary question in enzymology involves the role of protein dynamics and hydrogen tunneling in enhancing enzyme catalyzed reactions. Here, we report a correlation between the donor-acceptor distance (DAD) distribution and intrinsic kinetic isotope effects (KIEs) for the dihydrofolate reductase (DHFR) catalyzed reaction. This study compares the nature of the hydride-transfer step for a series of active-site mutants, where the size of a side chain that modulates the DAD (I14 in E. coli DHFR) is systematically reduced (I14V, I14A, and I14G). The contributions of the DAD and its dynamics to the hydride-transfer step were examined by the temperature dependence of intrinsic KIEs, hydride-transfer rates, activation parameters, and classical molecular dynamics (MD) simulations. Results are interpreted within the framework of the Marcus-like model where the increase in the temperature dependence of KIEs arises as a direct consequence of the deviation of the DAD from its distribution in the wild type enzyme. Classical MD simulations suggest new populations with larger average DADs, as well as broader distributions, and a reduction in the population of the reactive conformers correlated with the decrease in the size of the hydrophobic residue. The more flexible active site in the mutants required more substantial thermally activated motions for effective H-tunneling, consistent with the hypothesis that the role of the hydrophobic side chain of I14 is to restrict the distribution and dynamics of the DAD and thus assist the hydride-transfer. These studies establish relationships between the distribution of DADs, the hydride-transfer rates, and the DAD's rearrangement toward tunneling-ready states. This structure-function correlation shall assist in the interpretation of the temperature dependence of KIEs caused by mutants far from the active site in this and other enzymes, and may apply generally to C-H→C transfer reactions.


Subject(s)
Escherichia coli/enzymology , Tetrahydrofolate Dehydrogenase/metabolism , Catalytic Domain , Escherichia coli/chemistry , Escherichia coli/genetics , Kinetics , Models, Molecular , Mutation , Tetrahydrofolate Dehydrogenase/chemistry , Tetrahydrofolate Dehydrogenase/genetics
18.
Chemistry ; 17(15): 4145-56, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21404343

ABSTRACT

The nitroprusside ion [Fe(CN)(5)NO](2-) (NP) reacts with excess HS(-) in the pH range 8.5-12.5, in anaerobic medium ("Gmelin" reaction). The progress of the addition process of HS(-) into the bound NO(+) ligand was monitored by stopped-flow UV/Vis/EPR and FTIR spectroscopy, mass spectrometry, and chemical analysis. Theoretical calculations were employed for the characterization of the initial adducts and reaction intermediates. The shapes of the absorbance-time curves at 535-575 nm depend on the pH and concentration ratio of the reactants, R=[HS(-)]/[NP]. The initial adduct [Fe(CN)(5)N(O)SH](3-) (AH, λ(max) ≈570 nm) forms in the course of a reversible process, with k(ad)=190±20 M(-1)s(-1) , k(-ad)=0.3±0.05 s(-1) . Deprotonation of AH (pK(a)=10.5±0.1, at 25.0 °C, I=1 M), leads to [Fe(CN)(5)N(O)S](4-) (A, λ(max)=535 nm, ε=6000±300 M(-1) cm(-1) ). [Fe(CN)(5)NO](.)(3-) and HS(2)(.)(2-) radicals form through the spontaneous decomposition of AH and A. The minor formation of the [Fe(CN)(5)NO](3-) ion equilibrates with [Fe(CN)(4)NO](2-) through cyanide labilization, and generates the "g=2.03" iron-dinitrosyl, [Fe(NO)(2)(SH)(2)](-) , which is labile toward NO release. Alternative nucleophilic attack of HS(-) on AH and A generates the reactive intermediates [Fe(CN)(5)N(OH)(SH)(2)](3-) and [Fe(CN)(5)N(OH)(S)(SH)](4-) , respectively, which decompose through multielectronic nitrosyl reductions, leading to NH(3) and hydrogen disulfide, HS(2)(-) . N(2)O is also produced at pH≥11. Biological relevance relates to the role of NO, NO(-) , and other bound intermediates, eventually able to be released to the medium and rapidly trapped by substrates. Structure and reactivity comparisons of the new nitrososulfide ligands with free and bound nitrosothiolates are provided.


Subject(s)
Ferrous Compounds/chemistry , Hydrogen Sulfide/chemistry , Nitrogen Oxides/chemistry , Nitroprusside/chemistry , Hydrogen-Ion Concentration , Kinetics , Ligands , Molecular Structure , Oxidation-Reduction , Spectrophotometry, Ultraviolet , Stereoisomerism
19.
Chem Commun (Camb) ; 46(47): 8974-6, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-20972508

ABSTRACT

Comparison of the nature of hydride transfer in wild-type and active site mutant (I14A) of dihydrofolate reductase suggests that the size of this side chain at position 14 modulates H-tunneling.


Subject(s)
Alanine/chemistry , Isoleucine/chemistry , Tetrahydrofolate Dehydrogenase/metabolism , Amino Acid Substitution , Catalysis , Catalytic Domain , Escherichia coli/enzymology , Kinetics , Molecular Dynamics Simulation , Mutation , NADP/chemistry , NADP/metabolism , Tetrahydrofolate Dehydrogenase/genetics
20.
Biochemistry ; 47(37): 9793-802, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18717599

ABSTRACT

There is recent evidence suggesting that nitrite anion (NO 2 (-)) represents the major intravascular NO storage molecule whose transduction to NO is facilitated by a reduction mechanism catalyzed by deoxygenated hemoglobin (deoxy-Hb). In this work, we provide a detailed microscopic study of deoxy-Hb nitrite reductase (NIR) activity by combining classical molecular dynamics and hybrid quantum mechanical-molecular mechanical simulations. Our results point out that two alternative mechanisms could be operative and suggest that the most energetic barriers should stem from either reprotonation of the distal histidine or NO dissociation from the ferric heme. In the first proposed mechanism, which is similar to that proposed for bacterial NIRs, nitrite anion or nitrous acid coordinates to the heme through the N atom. This pathway involves HisE7 in a one or two proton transfer process, depending on whether the active species is nitrite anion or nitrous acid, to yield an intermediate Fe(III)NO species which eventually dissociates leading to NO and methemoglobin. In the second mechanism, the nitrite anion coordinates to the heme through the O atom. This pathway requires only one proton transfer from HisE7 and leads directly to the formation of a hydroxo Fe(III) complex and NO.


Subject(s)
Anions/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Nitric Oxide/metabolism , Nitrites/chemistry , Nitrites/metabolism , Anions/chemistry , Binding Sites , Catalysis , Histidine/chemistry , Histidine/metabolism , Humans , Ligands , Models, Molecular , Nitric Oxide/chemistry , Nitrite Reductases/chemistry , Nitrite Reductases/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...