Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Magn Reson Imaging ; 34(5): 645-53, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26795695

ABSTRACT

OBJECTIVE: To develop a method for the assessment and characterization of 3D geometric distortion as part of routine quality assurance for MRI scanners commissioned for Radiation Therapy planning. MATERIALS AND METHODS: In this study, the in-plane and through-plane geometric distortions on a 1.5T GE MRI-SIM unit are characterized and the 2D and 3D correction algorithms provided by the vendor are evaluated. We used a phantom developed by GE Healthcare that covers a large field of view of 500mm, and consists of layers of foam embedded with a matrix of ellipsoidal markers. An in-house Java-based software module was developed to automatically assess the geometric distortion by calculating the center of each marker using the center of mass method, correcting of gross rotation errors and comparing the corrected positions with a CT gold standard data set. Spatial accuracy of typical pulse sequences used in RT planning was assessed (2D T1/T2 FSE, 3D CUBE, T1 SPGR) using the software. The accuracy of vendor specific geometric distortion correction (GDC) algorithms was quantified by measuring distortions before and after the application of the 2D and 3D correction algorithms. RESULTS: Our algorithm was able to accurately calculate geometric distortion with sub-pixel precision. For all typical MR sequences used in Radiotherapy, the vendor's GDC was able to substantially reduce the distortions. Our results showed also that the impact of the acquisition produced a maximum variation of 0.2mm over a radial distance of 200mm. It has been shown that while the 2D correction algorithm remarkably reduces the in-plane geometric distortion, 3D geometric distortion further reduced the geometric distortion by correcting both in-plane and through-plane distortions in all acquisitions. CONCLUSION: The presented methods represent a valuable tool for routine quality assurance of MR applications that require stringent spatial accuracy assessment such as radiotherapy. The phantom used in this study provides three dimensional arrays of control points. These tools and the detailed results can be also used for developing new geometric distortion correction algorithms or improving the existing ones.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Phantoms, Imaging , Reproducibility of Results
2.
Magn Reson Imaging ; 33(7): 939-49, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25882440

ABSTRACT

OBJECTIVE: To develop and validate a large field of view phantom and quality assurance software tool for the assessment and characterization of geometric distortion in MRI scanners commissioned for radiation therapy planning. MATERIALS AND METHODS: A purpose built phantom was developed consisting of 357 rods (6mm in diameter) of polymethyl-methacrylat separated by 20mm intervals, providing a three dimensional array of control points at known spatial locations covering a large field of view up to a diameter of 420mm. An in-house software module was developed to allow automatic geometric distortion assessment. This software module was validated against a virtual dataset of the phantom that reproduced the exact geometry of the physical phantom, but with known translational and rotational displacements and warping. For validation experiments, clinical MRI sequences were acquired with and without the application of a commercial 3D distortion correction algorithm (Gradwarp™). The software module was used to characterize and assess system-related geometric distortion in the sequences relative to a benchmark CT dataset, and the efficacy of the vendor geometric distortion correction algorithms (GDC) was also assessed. RESULTS: Results issued from the validation of the software against virtual images demonstrate the algorithm's ability to accurately calculate geometric distortion with sub-pixel precision by the extraction of rods and quantization of displacements. Geometric distortion was assessed for the typical sequences used in radiotherapy applications and over a clinically relevant 420mm field of view (FOV). As expected and towards the edges of the field of view (FOV), distortion increased with increasing FOV. For all assessed sequences, the vendor GDC was able to reduce the mean distortion to below 1mm over a field of view of 5, 10, 15 and 20cm radius respectively. CONCLUSION: Results issued from the application of the developed phantoms and algorithms demonstrate a high level of precision. The results indicate that this platform represents an important, robust and objective tool to perform routine quality assurance of MR-guided therapeutic applications, where spatial accuracy is paramount.


Subject(s)
Artifacts , Image Enhancement/instrumentation , Image Enhancement/standards , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/standards , Software/standards , Equipment Design , Equipment Failure Analysis , Qatar , Quality Assurance, Health Care/standards , Reproducibility of Results , Sensitivity and Specificity
3.
Radiat Oncol ; 1: 13, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16722546

ABSTRACT

PURPOSE: To evaluate intensity-modulated radiation therapy (IMRT) as an alternative to conformal radiotherapy (CRT) or 4-field box boost (4FB) in women with gynecologic malignancies who are unsuitable for brachytherapy for technical or medical reasons. METHODS: Dosimetric and toxicity information was analyzed for 12 patients with cervical (8), endometrial (2) or vaginal (2) cancer previously treated with external beam pelvic radiotherapy and a CRT boost. Optimized IMRT boost treatment plans were then developed for each of the 12 patients and compared to CRT and 4FB plans. The plans were compared in terms of dose conformality and critical normal tissue avoidance. RESULTS: The median planning target volume (PTV) was 151 cm(3) (range 58-512 cm(3)). The median overlap of the contoured rectum with the PTV was 15 (1-56) %, and 11 (4-35) % for the bladder. Two of the 12 patients, both with large PTVs and large overlap of the contoured rectum and PTV, developed grade 3 rectal bleeding. The dose conformity was significantly improved with IMRT over CRT and 4FB (p < or = 0.001 for both). IMRT also yielded an overall improvement in the rectal and bladder dose-volume distributions relative to CRT and 4FB. The volume of rectum that received the highest doses (>66% of the prescription) was reduced by 22% (p < 0.001) with IMRT relative to 4FB, and the bladder volume was reduced by 19% (p < 0.001). This was at the expense of an increase in the volume of these organs receiving doses in the lowest range (<33%). CONCLUSION: These results indicate that IMRT can improve target coverage and reduce dose to critical structures in gynecologic patients receiving an external beam radiotherapy boost. This dosimetric advantage will be integrated with other patient and treatment-specific factors, particularly internal tumor movement during fractionated radiotherapy, in the context of a future image-guided radiation therapy study.


Subject(s)
Endometrial Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Uterine Cervical Neoplasms/radiotherapy , Vaginal Neoplasms/radiotherapy , Dose Fractionation, Radiation , Female , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies , Treatment Outcome
4.
Invest Radiol ; 41(3): 339-48, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16481918

ABSTRACT

OBJECTIVE: The objective of this study was to examine the feasibility of a multimodal system to effectively induce and maintain contrast enhancement in both computed tomography (CT) and magnetic resonance (MR) for radiation therapy applications. MATERIALS AND METHODS: The physicochemical characteristics of a liposome-encapsulated iohexol and gadoteridol formulation were assessed in terms of agent loading efficiencies, size and morphology, in vitro stability, and release kinetics. The imaging properties of the liposome formulation were assessed based on T1 and T2 relaxivity measurements and in vitro CT and MR imaging in a phantom. A preliminary imaging-based evaluation of the in vivo stability of this multimodal contrast agent was also performed in a lupine model. RESULTS: The average agent loading levels achieved were 26.5+/-3.8 mg/mL for iodine and 6.6+/- 1.5 mg/mL for gadolinium. These concentrations correspond to approximately 10% of that found in the commercially available preparations of each of these agents. However, this liposome-based formulation is expected to have a smaller volume of distribution and prolonged circulation lifetime in vivo. This multimodal system was found to have high agent retention in vitro, which translated into maintained contrast enhancement (up to 3 days) and stability in vivo. CONCLUSIONS: This study demonstrated the feasibility of engineering a multimodal contrast agent with prolonged contrast enhancement in vivo for use in CT and MR. This contrast agent may serve as a valuable tool for cardiovascular imaging as well as image registration and guidance applications in radiation therapy.


Subject(s)
Contrast Media/chemistry , Heart , Heterocyclic Compounds/chemistry , Iohexol/chemistry , Magnetic Resonance Imaging , Organometallic Compounds/chemistry , Tomography, X-Ray Computed , Animals , Contrast Media/pharmacokinetics , Drug Carriers , Feasibility Studies , Gadolinium , Heterocyclic Compounds/pharmacokinetics , Iohexol/pharmacokinetics , Liposomes , Organometallic Compounds/pharmacokinetics , Phantoms, Imaging , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...