Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 25(1): 91-101, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24434212

ABSTRACT

We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma (MM) patients and identified significantly mutated genes and copy number alterations and discovered putative tumor suppressor genes by determining homozygous deletions and loss of heterozygosity. We observed frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53, and DIS3 (particularly in nonhyperdiploid MM). Mutations were often present in subclonal populations, and multiple mutations within the same pathway (e.g., KRAS, NRAS, and BRAF) were observed in the same patient. In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth promotion of nonmutated subclones in some cases. These results emphasize the importance of heterogeneity analysis for treatment decisions.


Subject(s)
Genetic Heterogeneity , Multiple Myeloma/genetics , Blotting, Western , Gene Dosage , Humans , Mutation , Sequence Analysis, DNA
2.
Sci Transl Med ; 3(78): 78cm11, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21490273

ABSTRACT

The Multiple Myeloma Research Foundation (MMRF) has the principal goal of accelerating development of next-generation drugs for treating multiple myeloma. By making targeted investments in key research areas such as genomics and epigenetics, the MMRF is helping to elucidate the basic biology of multiple myeloma, to drive promising new treatments into clinical development, and ultimately to link the right treatment to the right patient.


Subject(s)
Drug Discovery/methods , Foundations , Genomics/methods
3.
Nature ; 471(7339): 467-72, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21430775

ABSTRACT

Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signalling was indicated by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.


Subject(s)
Genome, Human/genetics , Multiple Myeloma/genetics , Mutation/genetics , Amino Acid Sequence , Blood Coagulation/genetics , CpG Islands/genetics , DNA Mutational Analysis , DNA Repair/genetics , Exons/genetics , Exosome Multienzyme Ribonuclease Complex , Genomics , Histones/metabolism , Homeodomain Proteins/genetics , Homeostasis/genetics , Humans , Methylation , Models, Molecular , Molecular Sequence Data , Multiple Myeloma/drug therapy , Multiple Myeloma/enzymology , Multiple Myeloma/metabolism , NF-kappa B/metabolism , Oncogenes/genetics , Open Reading Frames/genetics , Protein Biosynthesis/genetics , Protein Conformation , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA Processing, Post-Transcriptional/genetics , Ribonucleases/chemistry , Ribonucleases/genetics , Signal Transduction/genetics , Transcription, Genetic/genetics
4.
Blood ; 115(8): 1594-604, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-19996089

ABSTRACT

A paucity of validated kinase targets in human multiple myeloma has delayed clinical deployment of kinase inhibitors in treatment strategies. We therefore conducted a kinome-wide small interfering RNA (siRNA) lethality study in myeloma tumor lines bearing common t(4;14), t(14;16), and t(11;14) translocations to identify critically vulnerable kinases in myeloma tumor cells without regard to preconceived mechanistic notions. Fifteen kinases were repeatedly vulnerable in myeloma cells, including AKT1, AK3L1, AURKA, AURKB, CDC2L1, CDK5R2, FES, FLT4, GAK, GRK6, HK1, PKN1, PLK1, SMG1, and TNK2. Whereas several kinases (PLK1, HK1) were equally vulnerable in epithelial cells, others and particularly G protein-coupled receptor kinase, GRK6, appeared selectively vulnerable in myeloma. GRK6 inhibition was lethal to 6 of 7 myeloma tumor lines but was tolerated in 7 of 7 human cell lines. GRK6 exhibits lymphoid-restricted expression, and from coimmunoprecipitation studies we demonstrate that expression in myeloma cells is regulated via direct association with the heat shock protein 90 (HSP90) chaperone. GRK6 silencing causes suppression of signal transducer and activator of transcription 3 (STAT3) phosphorylation associated with reduction in MCL1 levels and phosphorylation, illustrating a potent mechanism for the cytotoxicity of GRK6 inhibition in multiple myeloma (MM) tumor cells. As mice that lack GRK6 are healthy, inhibition of GRK6 represents a uniquely targeted novel therapeutic strategy in human multiple myeloma.


Subject(s)
G-Protein-Coupled Receptor Kinases/metabolism , Multiple Myeloma/enzymology , RNA, Small Interfering , Animals , Cell Line, Tumor , Chromosomes, Human/genetics , Chromosomes, Human/metabolism , G-Protein-Coupled Receptor Kinases/antagonists & inhibitors , G-Protein-Coupled Receptor Kinases/genetics , Gene Silencing/drug effects , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinases/genetics , Protein Kinases/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Translocation, Genetic/drug effects , Translocation, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...