Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 13(23): 2479-2483, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30328274

ABSTRACT

An in silico screen of 350 000 commercially available compounds was conducted with an unbiased approach to identify potential malaria inhibitors that bind to the Plasmodium falciparum protein kinase 5 (PfPK5) ATP-binding site. PfPK5 is a cyclin-dependent kinase-like protein with high sequence similarity to human cyclin-dependent kinase 2 (HsCDK2), but its precise role in cell-cycle regulation remains unclear. After two-dimensional fingerprinting of the top scoring compounds, 182 candidates were prioritized for biochemical testing based on their structural diversity. Evaluation of these compounds demonstrated that 135 bound to PfPK5 to a similar degree or better than known PfPK5 inhibitors, confirming that the library was enriched with PfPK5-binding compounds. A previously reported triazolodiamine HsCDK2 inhibitor and the screening hit 4-methylumbelliferone were each selected for an analogue study. The results of this study highlight the difficult balance between optimization of PfPK5 affinity and binding selectivity for PfPK5 over its closest human homologue HsCDK2. Our approach enabled the discovery of several new PfPK5-binding compounds from a modest screening campaign and revealed the first scaffold to have improved PfPK5/HsCDK2 selectivity. These steps are critical for the development of PfPK5-targeting probes for functional studies and antimalarials with decreased risks of host toxicity.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Cyclins/antagonists & inhibitors , Plasmodium falciparum/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protozoan Proteins/antagonists & inhibitors , Computer Simulation , Cyclins/metabolism , Drug Discovery , Hep G2 Cells , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Structure-Activity Relationship
2.
Cell Chem Biol ; 24(8): 1029-1039.e7, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28820959

ABSTRACT

Tumor necrosis factor alpha (TNF-α) has both positive and negative roles in human disease. In certain cancers, TNF-α is infused locally to promote tumor regression, but dose-limiting inflammatory effects limit broader utility. In autoimmune disease, anti-TNF-α antibodies control inflammation in most patients, but these benefits are offset during chronic treatment. TAK1 acts as a key mediator between survival and cell death in TNF-α-mediated signaling. Here, we describe Takinib, a potent and selective TAK1 inhibitor that induces apoptosis following TNF-α stimulation in cell models of rheumatoid arthritis and metastatic breast cancer. We demonstrate that Takinib is an inhibitor of autophosphorylated and non-phosphorylated TAK1 that binds within the ATP-binding pocket and inhibits by slowing down the rate-limiting step of TAK1 activation. Overall, Takinib is an attractive starting point for the development of inhibitors that sensitize cells to TNF-α-induced cell death, with general implications for cancer and autoimmune disease treatment.


Subject(s)
Benzamides/chemistry , Benzimidazoles/chemistry , MAP Kinase Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Tumor Necrosis Factor-alpha/metabolism , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Benzamides/metabolism , Benzamides/pharmacology , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Binding Sites , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line , Cell Proliferation/drug effects , Crystallography, X-Ray , Down-Regulation/drug effects , Female , Humans , Inhibitory Concentration 50 , Interleukin-6/metabolism , MAP Kinase Kinase Kinases/metabolism , Molecular Dynamics Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Structure-Activity Relationship , Synoviocytes/cytology , Synoviocytes/drug effects , Synoviocytes/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...