Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 114(9): 096404, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793834

ABSTRACT

We report a global structural distortion in Sr_{2}IrO_{4} using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an I4_{1}/acd to I4_{1}/a space group is observed both above and below the Néel temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective superexchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large noncubic local distortions. Our results explain the origin of the forbidden Bragg peaks recently observed in neutron diffraction experiments and reconcile the observations of strong tetragonal distortion and perfect magnetoelastic locking in Sr_{2}IrO_{4}.

2.
Phys Rev Lett ; 113(18): 187201, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25396391

ABSTRACT

We show how Raman spectroscopy can serve as a valuable tool for diagnosing quantum spin liquids (QSL). We find that the Raman response of the gapless QSL of the Kitaev-Heisenberg model exhibits signatures of spin fractionalization into Majorana fermions, which give rise to a broad signal reflecting their density of states, and Z(2) gauge fluxes, which also contribute a sharp feature. We discuss the current experimental situation and explore more generally the effect of breaking the integrability on response functions of Kitaev spin liquids.

3.
Phys Rev Lett ; 93(7): 077208, 2004 Aug 13.
Article in English | MEDLINE | ID: mdl-15324275

ABSTRACT

We discuss the ground state of a pyrochlore lattice of threefold orbitally degenerate S=1/2 magnetic ions. We derive an effective spin-orbital Hamiltonian and show that the orbital degrees of freedom can modulate the spin exchange, removing the infinite spin-degeneracy characteristic of pyrochlore structures. The resulting state is a collection of spin-singlet dimers, with a residual degeneracy due to their relative orientation. This latter is lifted by a magnetoelastic interaction, induced in the spin-singlet phase space, that forces a tetragonal distortion. Such a theory provides an explanation for the helical spin-singlet pattern observed in the B spinel MgTi2O4.

SELECTION OF CITATIONS
SEARCH DETAIL
...