Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Front Immunol ; 15: 1374818, 2024.
Article in English | MEDLINE | ID: mdl-38827738

ABSTRACT

Activated lung ILC2s produce large quantities of IL-5 and IL-13 that contribute to eosinophilic inflammation and mucus production following respiratory syncytial virus infection (RSV). The current understanding of ILC2 activation during RSV infection, is that ILC2s are activated by alarmins, including IL-33, released from airway epithelial cells in response to viral-mediated damage. Thus, high levels of RSV neutralizing maternal antibody generated from maternal immunization would be expected to reduce IL-33 production and mitigate ILC2 activation. Here we report that lung ILC2s from mice born to RSV-immunized dams become activated despite undetectable RSV replication. We also report, for the first time, expression of activating and inhibitory Fcgamma receptors on ILC2s that are differentially expressed in offspring born to immunized versus unimmunized dams. Alternatively, ex vivo IL-33-mediated activation of ILC2s was mitigated following the addition of antibody: antigen immune complexes. Further studies are needed to confirm the role of Fcgamma receptor ligation by immune complexes as an alternative mechanism of ILC2 regulation in RSV-associated eosinophilic lung inflammation.


Subject(s)
Interleukin-33 , Lung , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Respiratory Syncytial Viruses , Animals , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Mice , Female , Lung/immunology , Lung/virology , Interleukin-33/immunology , Respiratory Syncytial Viruses/immunology , Lymphocytes/immunology , Immunization , Receptors, IgG/immunology , Receptors, IgG/metabolism , Antibodies, Viral/immunology , Pregnancy , Respiratory Syncytial Virus Vaccines/immunology
2.
Tree Physiol ; 44(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38206883

ABSTRACT

Sap exudation is the process whereby trees such as sugar (Acer saccharum Marsh.) and red maple (Acer rubrum L.) generate unusually high positive stem pressure in response to repeated cycles of freeze and thaw. This elevated xylem pressure permits the sap to be harvested over a period of several weeks and hence is a major factor in the viability of the maple syrup industry. The extensive literature on sap exudation documents competing hypotheses regarding the physical and biological mechanisms that drive positive pressure generation in maple, but to date, relatively little effort has been expended on devising mathematical models for the exudation process. In this paper, we utilize an existing model of Graf et al. (J Roy Soc Interface 12:20150665, 2015) that describes heat and mass transport within the multiphase gas-liquid-ice mixture in the porous xylem tissue. The model captures the inherent multiscale nature of xylem transport by including phase change and osmotic transport in wood cells on the microscale, which is coupled to heat transport through the tree stem on the macroscale. A parametric study based on simulations with synthetic temperature data identifies the model parameters that have greatest impact on stem pressure build-up. Measured daily temperature fluctuations are then used as model inputs and the resulting simulated pressures are compared directly with experimental measurements taken from mature red and sugar maple stems during the sap harvest season. The results demonstrate that our multiscale freeze-thaw model reproduces realistic exudation behavior, thereby providing novel insights into the specific physical mechanisms that dominate positive pressure generation in maple trees.


Subject(s)
Acer , Acer/physiology , Freezing , Biological Transport , Wood , Carbohydrates
3.
Front Immunol ; 14: 1206026, 2023.
Article in English | MEDLINE | ID: mdl-37646035

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations due to bronchiolitis in children under 5 years of age. Moreover, severe RSV disease requiring hospitalization is associated with the subsequent development of wheezing and asthma. Due to the young age in which viral protection is needed and risk of vaccine enhanced disease following direct infant vaccination, current approaches aim to protect young children through maternal immunization strategies that boost neutralizing maternal antibody (matAb) levels. However, there is a scarcity of studies investigating the influence of maternal immunization on secondary immune responses to RSV in the offspring or whether the subsequent development of wheezing and asthma is mitigated. Toward this goal, our lab developed a murine model of maternal RSV vaccination and repeat RSV exposure to evaluate the changes in immune response and development of exacerbated lung inflammation on secondary RSV exposure in mice born to immunized dams. Despite complete protection following primary RSV exposure, offspring born to pre-fusion F (PreF)-vaccinated dams had exaggerated secondary ILC2 and Th2 responses, characterized by enhanced production of IL-4, IL-5, and IL-13. These enhanced type 2 cellular responses were associated with exaggerated airway eosinophilia and mucus hyperproduction upon re-exposure to RSV. Importantly, depletion of CD4+ T cells led to complete amelioration of the observed type 2 pathology on secondary RSV exposure. These unanticipated results highlight the need for additional studies that look beyond primary protection to better understand how maternal immunization shapes subsequent immune responses to repeat RSV exposure.


Subject(s)
Asthma , Pneumonia , Respiratory Syncytial Virus, Human , Animals , Mice , CD4-Positive T-Lymphocytes , Immunity, Innate , Respiratory Sounds , Pneumonia/prevention & control
4.
J Clin Med ; 12(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37240472

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.

5.
Front Immunol ; 14: 1039997, 2023.
Article in English | MEDLINE | ID: mdl-36776857

ABSTRACT

Background: Asthma is a major public healthcare burden, affecting over 300 million people worldwide. While there has been great progress in the treatment of asthma, subsets of patients who present with airway neutrophilia, often have more severe disease, and tend to be resistant to conventional corticosteroid treatments. The receptor for advanced glycation endproducts (RAGE) plays a central role in the pathogenesis of eosinophilic asthma, however, it's role in neutrophilic asthma remains largely uninvestigated. Methods: A mouse model of severe steroid resistant neutrophilic airway disease (SSRNAD) using the common fungal allergen Alternaria alternata (AA) was employed to evaluate the effects of genetic ablation of RAGE and pharmacological inhibition of the NLRP3 inflammasome on neutrophilic airway inflammation. Results: AA exposure induced robust neutrophil-dominant airway inflammation and increased BALF levels of Th1/Th17 cytokines in wild-type mice, which was significantly reduced in RAGE-/- mice. Serum levels of IgE and IgG1 were increased similarly in both wild-type and RAGE-/- mice. Pharmacological inhibition of NLRP3 blocked the effects of AA exposure and NLRP3 inflammasome activation was RAGE-dependent. Neutrophil extracellular traps were elevated in the BALF of wild-type but not RAGE-/- mice and an atypical population of SiglecF+ neutrophils were identified in the BALF. Lastly, time-course studies found that RAGE expression promoted sustained neutrophil accumulation in the BALF of mice in response to AA.


Subject(s)
Asthma , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Receptor for Advanced Glycation End Products , Animals , Mice , Allergens , Asthma/metabolism , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Receptor for Advanced Glycation End Products/genetics
6.
Front Immunol ; 13: 1025341, 2022.
Article in English | MEDLINE | ID: mdl-36268035

ABSTRACT

Respiratory syncytial virus (RSV) remains the most common cause of lower respiratory tract infections in children worldwide. Development of a vaccine has been hindered due the risk of enhanced respiratory disease (ERD) following natural RSV exposure and the young age (<6 months) at which children would require protection. Risk factors linked to the development of ERD include poorly neutralizing antibody, seronegative status (never been exposed to RSV), and a Th2-type immune response. Stabilization of the more antigenic prefusion F protein (PreF) has reinvigorated hope for a protective RSV vaccine that elicits potent neutralizing antibody. While anecdotal evidence suggests that children and adults previously exposed to RSV (seropositive) are not at risk for developing vaccine associated ERD, differences in host immune responses in seropositive and seronegative individuals that may protect against ERD remain unclear. It is also unclear if vaccine formulations that skew towards Th1- versus Th2-type immune responses increase pathology or provide greater protection in seropositive individuals. Therefore, the goal of this work was to compare the host immune response to a stabilized prefusion RSV antigen formulated alone or with Th1 or Th2 skewing adjuvants in seronegative and seropositive BALB/c mice. We have developed a novel BALB/c mouse model whereby mice are first infected with RSV (seropositive) and then vaccinated during pregnancy to recapitulate maternal immunization strategies. Results of these studies show that prior RSV infection mitigates vaccine-mediated skewing by Th1- and Th2-polarizing adjuvants that was observed in seronegative animals. Moreover, vaccination with PreF plus the Th1-skewing adjuvant, Advax, increased RSV F85-93-specific CD8 T cells in both seronegative and seropositive dams. These data demonstrate the importance of utilizing seropositive animals in preclinical vaccine studies to assess both the safety and efficacy of candidate RSV vaccines.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Mice , Animals , Antibodies, Viral , Lung , Antibodies, Neutralizing , Mice, Inbred BALB C , CD8-Positive T-Lymphocytes , Adjuvants, Immunologic
7.
Front Neurosci ; 15: 681021, 2021.
Article in English | MEDLINE | ID: mdl-34366773

ABSTRACT

This article presents a versatile neurostimulation platform featuring a fully implantable multi-channel neural stimulator for chronic experimental studies with freely moving large animal models involving peripheral nerves. The implant is hermetically sealed in a ceramic enclosure and encapsulated in medical grade silicone rubber, and then underwent active tests at accelerated aging conditions at 100°C for 15 consecutive days. The stimulator microelectronics are implemented in a 0.6-µm CMOS technology, with a crosstalk reduction scheme to minimize cross-channel interference, and high-speed power and data telemetry for battery-less operation. A wearable transmitter equipped with a Bluetooth Low Energy radio link, and a custom graphical user interface provide real-time, remotely controlled stimulation. Three parallel stimulators provide independent stimulation on three channels, where each stimulator supports six stimulating sites and two return sites through multiplexing, hence the implant can facilitate stimulation at up to 36 different electrode pairs. The design of the electronics, method of hermetic packaging and electrical performance as well as in vitro testing with electrodes in saline are presented.

8.
Ther Adv Respir Dis ; 15: 17534666211016071, 2021.
Article in English | MEDLINE | ID: mdl-34275342

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease in which most patients die within 3 years of diagnosis. With an unknown etiology, IPF results in progressive fibrosis of the lung parenchyma, diminishing normal lung function, which results in respiratory failure, and eventually, death. While few therapies are available to reduce disease progression, patients continue to advance toward respiratory failure, leaving lung transplantation the only viable option for survival. As incidence and mortality rates steadily increase, the need for novel therapeutics is imperative. The receptor for advanced glycation endproducts (RAGE) is most highly expressed in the lungs and plays a significant role in a number of chronic lung diseases. RAGE has long been linked to IPF; however, confounding data from both human and experimental studies have left an incomplete and perplexing story. This review examines the present understanding of the role of RAGE in human and experimental models of IPF, drawing parallels to recent advances in RAGE biology. Moreover, this review discusses the role of RAGE in lung injury response, type 2 immunity, and cellular senescence, and how such mechanisms may relate to RAGE as both a biomarker of disease progression and potential therapeutic target in IPF.The reviews of this paper are available via the supplemental material section.


Subject(s)
Pulmonary Fibrosis , Receptor for Advanced Glycation End Products , Disease Progression , Humans , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , Receptor for Advanced Glycation End Products/metabolism
9.
Allergy ; 76(5): 1350-1366, 2021 05.
Article in English | MEDLINE | ID: mdl-32976640

ABSTRACT

Asthma is a generalized term that describes a scope of distinct pathologic phenotypes of variable severity, which share a common complication of reversible airflow obstruction. Asthma is estimated to affect almost 400 million people worldwide, and nearly ten percent of asthmatics have what is considered "severe" disease. The majority of moderate to severe asthmatics present with a "type 2-high" (T2-hi) phenotypic signature, which pathologically is driven by the type 2 cytokines Interleukin-(IL)-4, IL-5, and IL-13. However, "type 2-low" (T2-lo) phenotypic signatures are often associated with more severe, steroid-refractory neutrophilic asthma. A wide range of clinical and experimental studies have found that the receptor for advanced glycation endproducts (RAGE) plays a significant role in the pathogenesis of asthma and allergic airway disease (AAD). Current experimental data indicates that RAGE is a critical mediator of the type 2 inflammatory reactions which drive the development of T2-hi AAD. However, clinical studies demonstrate that increased RAGE ligands and signaling strongly correlate with asthma severity, especially in severe neutrophilic asthma. This review presents an overview of the current understandings of RAGE in asthma pathogenesis, its role as a biomarker of disease, and future implications for mechanistic studies, and potential therapeutic intervention strategies.


Subject(s)
Asthma , Hypersensitivity/diagnosis , Receptor for Advanced Glycation End Products , Asthma/diagnosis , Cytokines , Humans , Interleukin-13 , Lung
10.
Vaccine ; 38(50): 7885-7891, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33129608

ABSTRACT

Respiratory syncytial virus (RSV) commonly causes severe respiratory tract infections in infants, peaking between 2 and 6 months of age; an age at which direct vaccination is unlikely to be effective. Maternal immunization can deliver high levels of antibodies to newborns, providing immediate protection. Following natural infection, antibodies targeting the prefusion conformation of RSV F protein (PreF) have the greatest neutralizing capacity and thus, may provide infants with a high degree of RSV protection when acquired through maternal vaccination. However, the influence of anti-PreF maternal antibodies on infant immunity following RSV exposure has not been elucidated. To address this knowledge gap, offspring born to dams immunized with a RSV PreF vaccine formulation were challenged with RSV and their immune responses were analyzed over time. These studies demonstrated safety and efficacy for RSV-challenged, maternally-immunized offspring but high and waning maternal antibody levels were associated with differential innate and T cell immunity.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Humans , Immunization , Infant , Infant, Newborn , Respiratory Syncytial Virus Infections/prevention & control , T-Lymphocytes , Vaccination , Viral Fusion Proteins
11.
Vaccine ; 38(41): 6357-6362, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32829976

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections among infants with most infections occurring in the first year of life. Multiple RSV exposures are required for children to mount adult-like immune responses. Although adult RSV immunity is associated with less severe disease, the protection induced through natural infection is short-lived. Therefore, vaccination of RSV-experienced young children may accelerate immunity and provide long-term protection from RSV reinfection. However, the extent to which different Th-biased vaccine regimens influence pre-existing humoral and cellular immunity in RSV-experienced young children is unknown. To address this question, infant BALB/c mice were RSV-infected and subsequently immunized with the prefusion RSV F (PreF) antigen formulated with either a Th2-skewing (Alum) or Th1/Th2-balanced (Advax-SM) adjuvant. These studies show that both adjuvants boosted neutralizing antibody and protected from RSV reinfection, but Advax-SM adjuvant prevented the Th2-skewed immunity observed in RSV-experienced young mice immunized with PreF/Alum.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Animals , Antibodies, Viral , Lung , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/prevention & control
12.
Front Immunol ; 11: 1673, 2020.
Article in English | MEDLINE | ID: mdl-32849580

ABSTRACT

Respiratory syncytial virus (RSV) remains the most common cause of lower respiratory tract infections in children worldwide. Development of a vaccine has been hindered by the risk of developing enhanced respiratory disease (ERD) upon natural exposure to the virus. Generation of higher quality neutralizing antibodies with stabilized pre-fusion F protein antigens has been proposed as a strategy to prevent ERD. We sought to test whether there was evidence of ERD in naïve BALB/c mice immunized with an unadjuvanted, stabilized pre-fusion F protein, and challenged with RSV line 19. We further sought to determine the extent to which formulation with a Th2-biased (alum) or a more Th1/Th2-balanced (Advax-SM) adjuvant influenced cellular responses and lung pathology. When exposed to RSV, mice immunized with pre-fusion F protein alone (PreF) exhibited increased airway eosinophilia and mucus accumulation. This was further exacerbated by formulation of PreF with Alum (aluminum hydroxide). Conversely, formulation of PreF with a Th1/Th2-balanced adjuvant, Advax-SM, not only suppressed RSV viral replication, but also inhibited airway eosinophilia and mucus accumulation. This was associated with lower numbers of lung innate lymphocyte cells (ILC2s) and CD4+ T cells producing IL-5+ or IL-13+ and increased IFNγ+ CD4+ and CD8+ T cells, in addition to RSV F-specific CD8+ T cells. These data suggest that in the absence of preimmunity, stabilized PreF antigens may still be associated with aberrant Th2 responses that induce lung pathology in response to RSV infection, and can be prevented by formulation with more Th1/Th2-balanced adjuvants that enhance CD4+ and CD8+ IFNγ+ T cell responses. This may support the use of stabilized PreF antigens with Th1/Th2-balanced adjuvants like, Advax-SM, as safer alternatives to alum in RSV vaccine candidates.


Subject(s)
Adjuvants, Immunologic/pharmacology , Aluminum Hydroxide/pharmacology , Lung/drug effects , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/pharmacology , Respiratory Syncytial Viruses/drug effects , Th2 Cells/drug effects , Viral Fusion Proteins/pharmacology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Female , Immunity, Humoral/drug effects , Immunization , Immunogenicity, Vaccine/drug effects , Lung/immunology , Lung/pathology , Lung/virology , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/pathogenicity , Th1-Th2 Balance/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism , Th2 Cells/virology
13.
J Allergy Clin Immunol ; 144(3): 796-808.e12, 2019 09.
Article in English | MEDLINE | ID: mdl-30940519

ABSTRACT

BACKGROUND: Asthma is estimated to effect more than 300 million persons worldwide, leading to nearly 250,000 deaths annually. The majority of patients with mild-to-severe asthma have what is deemed "type-2 high" asthma, which is driven by the prototypical type 2 cytokines IL-4, IL-5, and IL-13. Studies have indicated that the receptor for advanced glycation end products (RAGE) is a critical molecule in the pathogenesis of experimental asthma/allergic airway inflammation. More specifically, RAGE expressed on stromal cells, rather than hematopoietic cells, is critical to induction of asthma/allergic airway inflammation by driving type 2 inflammatory responses. However, the role of RAGE in directly mediating type 2 cytokine signaling has never been investigated. OBJECTIVE: The goal of this study was to test the hypothesis that RAGE mediates type 2 cytokine-induced signal transduction, airway inflammation, and mucus metaplasia in the lungs. METHODS: Wild-type (WT) and RAGE knockout (RAGE-/-) mice, were intranasally administered rIL-5/rIL-13 or rIL-4 alone, and signal transducer and activator of transcription 6 (STAT6) signaling, airway inflammation, and mucus metaplasia were assessed. A RAGE small-molecule antagonist was used to determine the effects of pharmacologically inhibiting RAGE on type 2 cytokine-induced effects. RESULTS: Administration of type 2 cytokines induced pronounced airway inflammation and mucus metaplasia in WT mice, which was nearly completely abrogated in RAGE-/- mice. In addition, treatment with a RAGE-specific antagonist diminished the effects of type 2 cytokines in WT mice and in primary human bronchial epithelial cell cultures. Genetic ablation or pharmacologic inhibition of RAGE blocks the effects of IL-13 and IL-4 by inhibiting sustained STAT6 activation and downstream target gene expression in mice and in human bronchial epithelial cells. CONCLUSIONS: This study is the first to indicate that RAGE is a critical component of type 2 cytokine signal transduction mechanisms, which is a driving force behind type 2-high asthma.


Subject(s)
Asthma/immunology , Cytokines/immunology , Lung/immunology , Receptor for Advanced Glycation End Products/immunology , Animals , Bronchoalveolar Lavage Fluid/immunology , Cells, Cultured , Epithelial Cells/immunology , Humans , Mice, Inbred C57BL , Mice, Knockout , Mucus/immunology , Receptor for Advanced Glycation End Products/genetics , Signal Transduction
14.
PLoS One ; 14(4): e0215511, 2019.
Article in English | MEDLINE | ID: mdl-31022212

ABSTRACT

The production of maple syrup is an important cultural and economic activity directly related to the climate of northeastern North America. As a result, there are signs that climate change could have negative impacts on maple syrup production in the next decades, particularly for regions located at the southern margins of the sugar maple (Acer saccharum Marsh.) range. The purpose of this survey study is to present the beliefs and opinions of maple syrup producers of Canada (N = 241) and the U.S. (N = 113) on climate change in general, its impacts on sugar maple health and maple syrup production, and potential adaptation measures. Using conditional inference classification trees, we examined how the socio-economic profile of respondents and the geographic location and size of respondents' sugar bushes shaped the responses of survey participants. While a majority (75%) of respondents are confident that the average temperature on Earth is increasing, less than half (46%) believe that climate change will have negative impacts on maple syrup yield in the next 30 years. Political view was a significant predictor of these results, with respondents at the right right and center-right of the political spectrum being less likely to believe in climate change and less likely to anticipate negative effects of climate change on maple syrup production. In addition, 77% of the participants indicated an interest in adopting adaptation strategies if those could increase maple syrup production. This interest was greater for respondents using vacuum tubing for sap collection than other collection methods. However, for many respondents (particularly in Canada), lack of information was identified as a constraint limiting adaptation to climate change.


Subject(s)
Acer/physiology , Attitude , Farmers/psychology , Plant Exudates/chemistry , Acclimatization , Adult , Canada , Climate Change , Crop Production/statistics & numerical data , Culture , Farmers/statistics & numerical data , Female , Humans , Male , Middle Aged , Plant Exudates/analysis , Sugars/analysis , Surveys and Questionnaires/statistics & numerical data , Taste , United States
15.
Toxicol Appl Pharmacol ; 348: 43-53, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29673857

ABSTRACT

Lung epithelial cells are the first cell-type to come in contact with hazardous dust materials. Upon deposition, they invoke complex reactions in attempt to eradicate particles from the airways, and repair damage. The cell surface is composed of a heterogeneous network of matrix proteins and proteoglycans, which act as scaffold and control cell-signaling networks. These functions are controlled, in part, by the sulfation patterns of heparin-sulfate proteoglycans (HSPGs), which are enzymatically regulated. Although there is evidence of altered HSPG-sulfation in idiopathic pulmonary fibrosis (IPF), this is not investigated in silicosis. Our previous studies revealed down-regulation of Sulfatase-1 (SULF1) in human bronchial epithelial cells (BECs) by crystalline silica (CS). In this study, CS-induced down-regulation of SULF1, and increases in Sulfated-HSPGs, were determined in human BECs, and in rat lungs. By siRNA and plasmid transfection techniques the effects of SULF1 expression on silica-induced fibrogenic and proliferative gene expression were determined. These studies confirmed down-regulation of SULF1 and subsequent increases in sulfated-HSPGs in vitro. Moreover, short-term exposure of rats to CS resulted in similar changes in vivo. Conversely, effects were reversed after long term CS exposure of rats. SULF1 knockdown, and overexpression alleviated and exacerbated silica-induced decrease in cell viability, respectively. Furthermore, overexpression of SULF1 promoted silica-induced proliferative and fibrogenic gene expression, and collagen production. These findings demonstrate that the HSPG modification enzyme SULF1 and HSPG sulfation are altered by CS in vitro and in vivo. Furthermore, these changes may contribute to CS-induced lung pathogenicity by affecting injury tolerance, hyperproliferation, and fibrotic effects.


Subject(s)
Cell Proliferation/drug effects , Epithelial Cells/drug effects , Lung/drug effects , Pulmonary Fibrosis/chemically induced , Silicon Dioxide/toxicity , Silicosis/etiology , Sulfotransferases/metabolism , Animals , Cell Line , Collagen/metabolism , Crystallization , Down-Regulation , Epithelial Cells/enzymology , Epithelial Cells/pathology , Female , Heparin/analogs & derivatives , Heparin/metabolism , Humans , Lung/enzymology , Lung/pathology , Proteoglycans/metabolism , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Rats, Wistar , Signal Transduction/drug effects , Silicon Dioxide/chemistry , Silicosis/enzymology , Silicosis/genetics , Silicosis/pathology , Sulfotransferases/genetics , Time Factors
16.
PLoS One ; 12(10): e0186839, 2017.
Article in English | MEDLINE | ID: mdl-29065137

ABSTRACT

Neisseria meningitidis is the causative agent of invasive meningococcal disease (IMD). A recombinant vaccine called Bexsero® incorporates four subcapsular antigens (fHbp, NHBA, NadA and PorA) which are used to assign a Bexsero® antigen sequence type (BAST) to each meningococcal strain. The vaccine elicits an immune response against combinations of variants of these antigens which have been grouped into specific BAST profiles that have been shown to have different distributions within geographical locations thus potentially affecting the efficacy of the vaccine. In this study, invasive meningococcal disease isolates from the western seaboard of Australia (Western Australia; WA) were compared to those from the south-eastern seaboard (Victoria; VIC) from 2008 to 2012. Whole-genome sequencing (WGS) of 131 meningococci from VIC and 70 meningococci from WA were analysed for MLST, FetA and BAST profiling. Serogroup B predominated in both jurisdictions and a total of 10 MLST clonal complexes (cc) were shared by both states. Isolates belonging to cc22, cc103 and cc1157 were unique to VIC whilst isolates from cc60 and cc212 were unique to WA. Clonal complex 41/44 represented one-third of the meningococcal population in each state but the predominant ST was locally different: ST-6058 in VIC and ST-146 in WA. Of the 108 BAST profiles identified in this collection, only 9 BASTs were simultaneously observed in both states. A significantly larger proportion of isolates in VIC harboured alleles for the NHBA-2 peptide and fHbp-1, antigenic variants predicted to be covered by the Bexsero® vaccine. The estimate for vaccine coverage in WA (47.1% [95% CI: 41.1-53.1%]) was significantly lower than that in VIC (66.4% [95% CI: 62.3-70.5%]). In conclusion, the antigenic structure of meningococci causing invasive disease in two geographically distinct states of Australia differed significantly during the study period which may affect vaccine effectiveness and highlights the need for representative surveillance when predicting potential impact of meningococcal B vaccines.


Subject(s)
Neisseria meningitidis/classification , Antigens, Bacterial/immunology , Genes, Bacterial , Humans , Neisseria meningitidis/genetics , Neisseria meningitidis/immunology , Victoria , Western Australia
17.
Paediatr Respir Rev ; 23: 40-49, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28416135

ABSTRACT

The receptor for advanced glycation endproducts (RAGE) is a pro-inflammatory pattern recognition receptor (PRR) that has been implicated in the pathogenesis of numerous inflammatory diseases. It was discovered in 1992 on endothelial cells and was named for its ability to bind advanced glycation endproducts and promote vascular inflammation in the vessels of patients with diabetes. Further studies revealed that RAGE is most highly expressed in lung tissue and spurred numerous explorations into RAGE's role in the lung. These studies have found that RAGE is an important mediator in allergic airway inflammation (AAI) and asthma, pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), acute lung injury, pneumonia, cystic fibrosis, and bronchopulmonary dysplasia. RAGE has not yet been targeted in the lungs of paediatric or adult clinical populations, but the development of new ways to inhibit RAGE is setting the stage for the emergence of novel therapeutic agents for patients suffering from these pulmonary conditions.


Subject(s)
Pneumonia , Receptor for Advanced Glycation End Products , Adult , Child , Drug Discovery , Glycation End Products, Advanced/metabolism , Humans , Pneumonia/metabolism , Pneumonia/therapy , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Receptor for Advanced Glycation End Products/metabolism
18.
Sci Rep ; 7: 44442, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28290510

ABSTRACT

Pathogenic meningococci have acquired a 24 kb capsule synthesis island (cps) by horizontal gene transfer which consists of a synthetic locus and associated capsule transport genes flanked by repetitive Regions D and D'. Regions D and D' contain an intact gene encoding a UDP-galactose epimerase (galE1) and a truncated remnant (galE2), respectively. In this study, GalE protein alleles were shown to be either mono-functional, synthesising UDP-galactose (UDP-Gal), or bi-functional, synthesising UDP-Gal and UDP-galactosamine (UDP-GalNAc). Meningococci possessing a capsule null locus (cnl) typically possessed a single bi-functional galE. Separation of functionality between galE1 and galE2 alleles in meningococcal isolates was retained for all serogroups except serogroup E which has a synthetic requirement for UDP-GalNAc. The truncated galE2 remnant in Region D' was also phylogenetically related to the bi-functional galE of the cnl locus suggesting common ancestry. A model is proposed in which the illegitimate recombination of the cps island into the galE allele of the cnl locus results in the formation of Region D' containing the truncated galE2 locus and the capture of the cps island en bloc. The retention of the duplicated Regions D and D' enables inversion of the synthetic locus within the cps island during bacterial growth.


Subject(s)
Gene Transfer, Horizontal/genetics , Meningitis, Meningococcal/genetics , Neisseria meningitidis/genetics , UDPglucose 4-Epimerase/genetics , Bacterial Capsules/genetics , Humans , Meningitis, Meningococcal/microbiology , Neisseria meningitidis/pathogenicity , Repetitive Sequences, Nucleic Acid/genetics , Uridine Diphosphate Galactose/biosynthesis
19.
Am J Respir Cell Mol Biol ; 56(6): 694-699, 2017 06.
Article in English | MEDLINE | ID: mdl-28080134

ABSTRACT

Bronchial epithelial cells and pulmonary endothelial cells are thought to be the primary modulators of conducting airways and vessels, respectively. However, histological examination of both mouse and human lung tissue reveals that alveolar epithelial cells (AECs) line the adventitia of large airways and vessels and thus are also in a position to directly regulate these structures. The primary purpose of this perspective is to highlight the fact that AECs coat the adventitial surface of every vessel and airway in the lung parenchyma. This localization is ideal for transmitting signals that can contribute to physiologic and pathologic responses in vessels and airways. A few examples of mediators produced by AECs that may contribute to vascular and airway responses are provided to illustrate some of the potential effects that AECs may modulate.


Subject(s)
Alveolar Epithelial Cells/metabolism , Lung/blood supply , Lung/metabolism , Alveolar Epithelial Cells/immunology , Animals , Humans , Immunity, Innate , Lung/physiology , Models, Biological
20.
IUCrdata ; 22017.
Article in English | MEDLINE | ID: mdl-29445777

ABSTRACT

The title compound, C19H12Cl2N2O4S3, is related to a ditosylated 2-iminobenzothiazole with the two methyl groups on the two phenyl rings replaced by chlorine. There is a weak intramolecular π-π contact between the two phenyl rings, with a centroid-to-centroid distance of 4.004 (2) Å. The dihedral angle between the rings is 9.96 (13)°. An intramolecular C-H⋯O hydrogen bond stabilizes the molecular conformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...