Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater Technol ; 8(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-37007916

ABSTRACT

Studies of electrosensory systems have led to insights into to a number of general issues in biology. However, investigations of these systems have been limited by the inability to precisely control spatial patterns of electrosensory input. In this paper, an electrode array and a system to selectively stimulate spatially restricted regions of an electroreceptor array is presented. The array has 96 channels consisting of chrome/gold electrodes patterned on a flexible parylene-C substrate and encapsulated with another parylene-C layer. The conformability of the electrode array allows for optimal current driving and surface interface conditions. Recordings of neural activity at the first central processing stage in weakly electric mormyrid fish support the potential of this system for high spatial resolution stimulation and mapping of electrosensory systems.

2.
Cell Rep ; 38(13): 110605, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354029

ABSTRACT

The latency of spikes relative to a stimulus conveys sensory information across modalities. However, in most cases, it remains unclear whether and how such latency codes are utilized by postsynaptic neurons. In the active electrosensory system of mormyrid fish, a latency code for stimulus amplitude in electroreceptor afferent nerve fibers (EAs) is hypothesized to be read out by a central reference provided by motor corollary discharge (CD). Here, we demonstrate that CD enhances sensory responses in postsynaptic granular cells of the electrosensory lobe but is not required for reading out EA input. Instead, diverse latency and spike count tuning across the EA population give rise to graded information about stimulus amplitude that can be read out by standard integration of converging excitatory synaptic inputs. Inhibitory control over the temporal window of integration renders two granular cell subclasses differentially sensitive to information derived from relative spike latency versus spike count.


Subject(s)
Electric Fish , Electric Organ , Animals , Electric Fish/physiology , Electric Organ/physiology , Neurons/physiology , Synaptic Transmission
3.
J Exp Biol ; 223(Pt 4)2020 02 20.
Article in English | MEDLINE | ID: mdl-31953367

ABSTRACT

An animal's own movement exerts a profound impact on sensory input to its nervous system. Peripheral sensory receptors do not distinguish externally generated stimuli from stimuli generated by an animal's own behavior (reafference) - although the animal often must. One way that nervous systems can solve this problem is to provide movement-related signals (copies of motor commands and sensory feedback) to sensory systems, which can then be used to generate predictions that oppose or cancel out sensory responses to reafference. Here, we studied the use of movement-related signals to generate sensory predictions in the lateral line medial octavolateralis nucleus (MON) of the little skate. In the MON, mechanoreceptive afferents synapse on output neurons that also receive movement-related signals from central sources, via a granule cell parallel fiber system. This parallel fiber system organization is characteristic of a set of so-called cerebellum-like structures. Cerebellum-like structures have been shown to support predictive cancellation of reafference in the electrosensory systems of fish and the auditory system of mice. Here, we provide evidence that the parallel fiber system in the MON can generate predictions that are negative images of (and therefore cancel) sensory input associated with respiratory and fin movements. The MON, found in most aquatic vertebrates, is probably one of the most primitive cerebellum-like structures and a starting point for cerebellar evolution. The results of this study contribute to a growing body of work that uses an evolutionary perspective on the vertebrate cerebellum to understand its functional diversity in animal behavior.


Subject(s)
Afferent Pathways/physiology , Lateral Line System/physiology , Sensory Receptor Cells/physiology , Skates, Fish/physiology , Animal Fins , Animals , Cerebellum/physiology , Electrophysiological Phenomena , Movement , Neuronal Plasticity/physiology , Respiration
4.
Eur J Neurosci ; 41(5): 725-33, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25728189

ABSTRACT

Natural acoustic communication signals, such as speech, are typically high-dimensional with a wide range of co-varying spectro-temporal features at multiple timescales. The synaptic and network mechanisms for encoding these complex signals are largely unknown. We are investigating these mechanisms in high-level sensory regions of the songbird auditory forebrain, where single neurons show sparse, object-selective spiking responses to conspecific songs. Using whole-cell in vivo patch clamp techniques in the caudal mesopallium and the caudal nidopallium of starlings, we examine song-driven subthreshold and spiking activity. We find that both the subthreshold and the spiking activity are reliable (i.e. the same song drives a similar response each time it is presented) and specific (i.e. responses to different songs are distinct). Surprisingly, however, the reliability and specificity of the subthreshold response was uniformly high regardless of when the cell spiked, even for song stimuli that drove no spikes. We conclude that despite a selective and sparse spiking response, high-level auditory cortical neurons are under continuous, non-selective, stimulus-specific synaptic control. To investigate the role of local network inhibition in this synaptic control, we then recorded extracellularly while pharmacologically blocking local GABAergic transmission. This manipulation modulated the strength and the reliability of stimulus-driven spiking, consistent with a role for local inhibition in regulating the reliability of network activity and the stimulus specificity of the subthreshold response in single cells. We discuss these results in the context of underlying computations that could generate sparse, stimulus-selective spiking responses, and models for hierarchical pooling.


Subject(s)
Auditory Cortex/physiology , Auditory Threshold , Evoked Potentials, Auditory , Vocalization, Animal , Animals , Auditory Cortex/cytology , GABAergic Neurons/physiology , Starlings , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...