Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 750: 141693, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32846253

ABSTRACT

Extreme rainfall events are predicted to become more frequent with climate change and can have a major bearing on instream solute and pollutant transport in mineralised catchments. The Coledale Beck catchment in north-west England was subject to an extreme rainfall event in December 2015 that equated to a 1 in 200-year event. The catchment contains the UK's first passive metal mine water treatment system, and as such had been subject to intense monitoring of solute dynamics before and after commissioning. Due to this monitoring record, the site provides a unique opportunity to assess the effects of a major storm event on (1) catchment-scale solute transport, and (2) the resilience of the new and novel passive treatment system to extreme events. Monitoring suggests a modest decline in treatment efficiency over time that is not synchronous with the storm event and explained instead by changes in system hydraulic efficiency. There was no apparent flushing of the mine system during the event that could potentially have compromised treatment system performance. Analysis of metal transport in the catchment downstream of the mine suggests relatively subtle changes in instream chemistry with modest but statistically-significant reductions in zinc in the lower catchment irrespective of flow condition after the extreme event, but most parameters of interest show no significant change. Increased export of colloidal iron and aluminium is associated with major landslips in the mid-catchment after the storm and provide fresh sorption sites to attenuate dissolved zinc more rapidly in these locations, corroborated by laboratory experiments utilising site materials to investigate the attenuation/release of metals from stream and terrestrial sediments. The data are important as they show both the resilience of passive mine water treatment systems to extreme events and the importance of catchment-scale monitoring to ensure continued effectiveness of treatment initiatives after major perturbation.

2.
J Environ Manage ; 202(Pt 2): 469-478, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28185700

ABSTRACT

Under the EU Water Framework Directive, suspended sediment is omitted from environmental quality standards and compliance targets. This omission is partly explained by difficulties in assessing the complex dose-response of ecological communities. But equally, it is hindered by a lack of spatially distributed estimates of suspended sediment variability across catchments. In this paper, we demonstrate the inability of traditional, discrete sampling campaigns for assessing exposure to fine sediment. Sampling frequencies based on Environmental Quality Standard protocols, whilst reflecting typical manual sampling constraints, are unable to determine the magnitude of sediment exposure with an acceptable level of precision. Deviations from actual concentrations range between -35 and +20% based on the interquartile range of simulations. As an alternative, we assess the value of low-cost, suspended sediment sampling networks for quantifying suspended sediment transfer (SST). In this study of the 362 km2 upland Esk catchment we observe that spatial patterns of sediment flux are consistent over the two year monitoring period across a network of 17 monitoring sites. This enables the key contributing sub-catchments of Butter Beck (SST: 1141 t km2 yr-1) and Glaisdale Beck (SST: 841 t km2 yr-1) to be identified. The time-integrated samplers offer a feasible alternative to traditional infrequent and discrete sampling approaches for assessing spatio-temporal changes in contamination. In conjunction with a spatially distributed diffuse pollution model (SCIMAP), time-integrated sediment sampling is an effective means of identifying critical sediment source areas in the catchment, which can better inform sediment management strategies for pollution prevention and control.


Subject(s)
Geologic Sediments , Water Quality , Water Supply , Environmental Monitoring , Europe
3.
Sci Total Environ ; 523: 178-90, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25863509

ABSTRACT

Recent advances in monitoring technology have enabled high frequency, in-situ measurements of total phosphorus and total reactive phosphorus to be undertaken with high precision, whilst turbidity can provide an excellent surrogate for suspended sediment. Despite these measurements being fundamental to understanding the mechanisms and flow paths that deliver these constituents to river networks, there is a paucity of such data for headwater agricultural catchments. The aim of this paper is to deduce the dominant mechanisms for the delivery of fine sediment and phosphorus to an upland river network in the UK through characterisation of the temporal variability of hydrological fluxes, and associated soluble and particulate concentrations for the period spanning March 2012-February 2013. An assessment of the factors producing constituent hysteresis is undertaken following factor analysis (FA) on a suite of measured environmental variables representing the fluvial and wider catchment conditions prior to, and during catchment-wide hydrological events. Analysis indicates that suspended sediment is delivered to the fluvial system predominantly via rapidly responding pathways driven by event hydrology. However, evidence of complex, figure-of-eight hysteresis is observed following periods of hydrological quiescence, highlighting the importance of preparatory processes. Sediment delivery via a slow moving, probably sub-surface pathway does occur, albeit infrequently and during low magnitude events at the catchment outlet. Phosphorus is revealed to have a distinct hysteretic response to that of suspended sediment, with sub-surface pathways dominating. However, high magnitude events were observed to exhibit threshold-like behaviour, whereby activation and connection of usually disconnected depositional zones to the fluvial networks results in the movement of vast phosphorus fluxes. Multiple pathways are observed for particulate and soluble constituents, highlighting the challenges faced in mitigating the delivery of contaminant fluxes to headwater river systems.


Subject(s)
Environmental Monitoring , Geologic Sediments/analysis , Grassland , Phosphorus/analysis , Water Pollutants/analysis , Agriculture , Rivers
4.
Environ Sci Process Impacts ; 16(7): 1629-36, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24647601

ABSTRACT

Headwater streams are an important feature of the landscape, with their diversity in structure and associated ecological function providing a potential natural buffer against downstream nutrient export. Phytobenthic communities, dominated in many headwaters by diatoms, must respond to physical and chemical parameters that can vary in magnitude within hours, whereas the ecological regeneration times are much longer. How diatom communities develop in the fluctuating, dynamic environments characteristic of headwaters is poorly understood. Deployment of near-continuous monitoring technology in sub-catchments of the River Eden, NW England, provides the opportunity for measurement of temporal variability in stream discharge and nutrient resource supply to benthic communities, as represented by monthly diatom samples collected over two years. Our data suggest that the diatom communities and the derived Trophic Diatom Index, best reflect stream discharge conditions over the preceding 18-21 days and Total Phosphorus concentrations over a wider antecedent window of 7-21 days. This is one of the first quantitative assessments of long-term diatom community development in response to continuously-measured stream nutrient concentration and discharge fluctuations. The data reveal the sensitivity of these headwater communities to mean conditions prior to sampling, with flow as the dominant variable. With sufficient understanding of the role of antecedent conditions, these methods can be used to inform interpretation of monitoring data, including those collected under the European Water Framework Directive and related mitigation efforts.


Subject(s)
Aquatic Organisms/growth & development , Environmental Monitoring , Rivers/chemistry , Animals , Aquatic Organisms/classification , Diatoms/growth & development , Ecosystem , England , Phosphorus/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...