Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 30(11): 1403-14, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20943651

ABSTRACT

Light availability and infestation by the green spruce aphid (Elatobium abietinum) are key factors affecting the growth of Sitka spruce (Picea sitchensis) seedlings under a mature tree canopy, but their combined effect on seedling growth has not previously been quantified. A controlled outdoor experiment in which light levels (high light (HL): 100%, intermediate light (IL): 24%) and aphid infestation (absence/presence) were manipulated was conducted over 2 years to look at the effects on seedling growth and biomass distribution patterns. Aphid population assessments showed a significantly increased population density under IL, with three to four times higher cumulative aphid densities than that under HL. Defoliation rates of infested seedlings were directly related to aphid density. Total seedling biomass was strongly reduced in IL, and aphid infestation caused additional reductions in the biomass of particular components of the seedlings. Dry weight (DW) of older (≥1-year-old) needles in infested trees was significantly decreased in both years. Total root DW at the end of the second year was significantly affected by aphid infestation, and the reduction (14-18%) was similar in IL and HL treatments despite large differences in aphid density. Biomass distribution patterns in infested trees were similar to that of uninfested trees within each light treatment, indicating that the relative decreases in root biomass were accompanied by similar reductions in distribution to the above-ground parts of the seedlings. Leader extension growth of infested seedlings was reduced by 15-17% compared with uninfested seedlings under IL, whereas only a 2-3% reduction in leader extension of infested seedlings under HL was observed. The results showed that the response of seedlings to E. abietinum were primarily dependent on the light environment. The significant reduction caused by aphids on the total DW of older needles and roots, and on leader extension growth, does suggest the potential for effects to accumulate over time.


Subject(s)
Aphids/growth & development , Ecosystem , Picea/parasitology , Seedlings/parasitology , Animals , Aphids/radiation effects , Biomass , Host-Parasite Interactions , Light , Picea/growth & development , Picea/radiation effects , Plant Leaves/parasitology , Plant Roots/parasitology , Population Density , Seedlings/growth & development , Seedlings/radiation effects , Time Factors
2.
Tree Physiol ; 30(6): 705-14, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20404352

ABSTRACT

Our knowledge of the nature of belowground competition for moisture and nutrients is limited. In this study, we used an earth impedance method to determine the root absorbing area of Sitka spruce (Picea sitchensis (Bong.) Carr.) trees, making measurements in stands of differing density (2-, 4- and 6-m inter-tree spacing). We compared absorbing root area index (RAI(absorbing); based on the impedance measure) with fine root area index (RAI(fine); based on estimates of total surface area of fine roots) and related these results to investment in conductive roots. Root absorbing area was a near-linear function of tree stem diameter at 1.3 m height. At the stand level, RAI(absorbing), which is analogous to and scaled with transpiring leaf area index (maximum stomatal pore area per unit ground area; LAI(transpiring)), increased proportionally with basal area across the three stands. In contrast, RAI(fine) was inversely propotional to basal area. The ratio of RAI(absorbing) to LAI(transpiring) ranged from 7.7 to 17.1, giving an estimate of the relative aboveground versus belowground resource exchange areas. RAI(absorbing) provides a way of characterizing ecosystem functioning as a physiologically meaningful index of belowground absorbing area.


Subject(s)
Picea/physiology , Trees/physiology , Biomass , Carbon/metabolism , Ecosystem , Environment , Plant Leaves/physiology , Plant Roots/anatomy & histology , Plant Roots/physiology , Scotland , Soil/analysis
3.
Tree Physiol ; 22(12): 877-83, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12184977

ABSTRACT

We investigated the effect of drought on canopy stomatal conductance (g(c)), and examined the hypothesis that g(c) is controlled by the chemical messenger abscisic acid (ABA) produced in roots. Beginning in November 1994, we subjected a mature stand of Scots pine (Pinus sylvestris L.) to an imposed 11-month drought. Control plots were maintained at average-season soil water content. Xylem sap was extracted from shoots at regular intervals from April to November 1995. Soil water, sap flow and leaf water potentials (predawn to dusk) were recorded at the same time. Canopy stomatal conductance was calculated from sap flow data and xylem sap ABA concentrations ([ABA(xyl)]) were measured by radioimmunoassay. Mean [ABA(xyl)] in control trees was 250 micromol m(-3). No diurnal variation in [ABA(xyl)] was detected. With soil drying, [ABA(xyl)] increased to a maximum in summer (600 micromol m(-3)), but decreased again toward autumn; however, no significant increase in ABA flux to the leaves occurred. A decline in g(c) was detected when volumetric soil water content declined below 0.12. The decline in g(c) could not have been mediated by increasing [ABA(xyl)] because stomatal closure appeared to precede any increase in [ABA(xyl)]. Peak sap flow velocity data were used to estimate delivery times for root-to-shoot signals in 15-m tall trees. Under normal field conditions, a signal would take 12 days to travel from the site of production (roots) to the presumed site of action (shoots). However, under drought conditions it may take a chemical signal in excess of 6 weeks. We conclude that a feedforward model of short-term stomatal response to soil drying, based solely on the action of a chemical messenger from the roots, is not applicable in mature conifer trees because signal transmission is too slow.


Subject(s)
Abscisic Acid/analysis , Pinus/physiology , Plant Transpiration/physiology , Trees/physiology , Abscisic Acid/physiology , Circadian Rhythm/physiology , Dehydration , Pinus/chemistry , Plant Leaves/physiology , Plant Stems/chemistry , Plant Stems/physiology , Trees/chemistry
4.
Tree Physiol ; 18(6): 393-402, 1998 Jun.
Article in English | MEDLINE | ID: mdl-12651364

ABSTRACT

We investigated the impact of drought on the physiology of 41-year-old Scots pine (Pinus sylvestris L.) in central Scotland. Measurements were made of the seasonal course of transpiration, canopy stomatal conductance, needle water potential, xylem water content, soil-to-needle hydraulic resistance, and growth. Comparison was made between drought-treated plots and those receiving average precipitation. In response to drought, transpiration rate declined once volumetric water content (VWC) over the top 20 cm of soil reached a threshold value of 12%. Thereafter, transpiration was a near linear function of soil water content. As the soil water deficit developed, the hydraulic resistance between soil and needles increased by a factor of three as predawn needle water potential declined from -0.54 to -0.71 MPa. A small but significant increase in xylem embolism was detected in 1-year-old shoots. Stomatal control of transpiration prevented needle water potential from declining below -1.5 MPa. Basal area, and shoot and needle growth were significantly reduced in the drought treatment. In the year following the drought, canopy stomatal conductance and soil-to-needle hydraulic resistance recovered. Current-year needle extension recovered, but a significant reduction in basal area increment was evident one year after the drought. The results suggest that, in response to soil water deficit, mature Scots pine closes its stomata sufficiently to prevent the development of substantial xylem embolism. Reduced growth in the year after a severe soil water deficit is most likely to be the result of reduced assimilation in the year of the drought, rather than to any residual embolism carried over from one year to the next.

SELECTION OF CITATIONS
SEARCH DETAIL
...