Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
BMC Med Inform Decis Mak ; 23(Suppl 1): 88, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37161560

ABSTRACT

BACKGROUND: The extensive international research for medications and vaccines for the devastating COVID-19 pandemic requires a standard reference ontology. Among the current COVID-19 ontologies, the Coronavirus Infectious Disease Ontology (CIDO) is the largest one. Furthermore, it keeps growing very frequently. Researchers using CIDO as a reference ontology, need a quick update about the content added in a recent release to know how relevant the new concepts are to their research needs. Although CIDO is only a medium size ontology, it is still a large knowledge base posing a challenge for a user interested in obtaining the "big picture" of content changes between releases. Both a theoretical framework and a proper visualization are required to provide such a "big picture". METHODS: The child-of-based layout of the weighted aggregate partial-area taxonomy summarization network (WAT) provides a "big picture" convenient visualization of the content of an ontology. In this paper we address the "big picture" of content changes between two releases of an ontology. We introduce a new DIFF framework named Diff Weighted Aggregate Taxonomy (DWAT) to display the differences between the WATs of two releases of an ontology. We use a layered approach which consists first of a DWAT of major subjects in CIDO, and then drill down a major subject of interest in the top-level DWAT to obtain a DWAT of secondary subjects and even further refined layers. RESULTS: A visualization of the Diff Weighted Aggregate Taxonomy is demonstrated on the CIDO ontology. The evolution of CIDO between 2020 and 2022 is demonstrated in two perspectives. Drilling down for a DWAT of secondary subject networks is also demonstrated. We illustrate how the DWAT of CIDO provides insight into its evolution. CONCLUSIONS: The new Diff Weighted Aggregate Taxonomy enables a layered approach to view the "big picture" of the changes in the content between two releases of an ontology.


Subject(s)
COVID-19 , Humans , Pandemics , Knowledge , Knowledge Bases
2.
BMC Med Inform Decis Mak ; 23(Suppl 1): 40, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36829139

ABSTRACT

BACKGROUND: Two years into the COVID-19 pandemic and with more than five million deaths worldwide, the healthcare establishment continues to struggle with every new wave of the pandemic resulting from a new coronavirus variant. Research has demonstrated that there are variations in the symptoms, and even in the order of symptom presentations, in COVID-19 patients infected by different SARS-CoV-2 variants (e.g., Alpha and Omicron). Textual data in the form of admission notes and physician notes in the Electronic Health Records (EHRs) is rich in information regarding the symptoms and their orders of presentation. Unstructured EHR data is often underutilized in research due to the lack of annotations that enable automatic extraction of useful information from the available extensive volumes of textual data. METHODS: We present the design of a COVID Interface Terminology (CIT), not just a generic COVID-19 terminology, but one serving a specific purpose of enabling automatic annotation of EHRs of COVID-19 patients. CIT was constructed by integrating existing COVID-related ontologies and mining additional fine granularity concepts from clinical notes. The iterative mining approach utilized the techniques of 'anchoring' and 'concatenation' to identify potential fine granularity concepts to be added to the CIT. We also tested the generalizability of our approach on a hold-out dataset and compared the annotation coverage to the coverage obtained for the dataset used to build the CIT. RESULTS: Our experiments demonstrate that this approach results in higher annotation coverage compared to existing ontologies such as SNOMED CT and Coronavirus Infectious Disease Ontology (CIDO). The final version of CIT achieved about 20% more coverage than SNOMED CT and 50% more coverage than CIDO. In the future, the concepts mined and added into CIT could be used as training data for machine learning models for mining even more concepts into CIT and further increasing the annotation coverage. CONCLUSION: In this paper, we demonstrated the construction of a COVID interface terminology that can be utilized for automatically annotating EHRs of COVID-19 patients. The techniques presented can identify frequently documented fine granularity concepts that are missing in other ontologies thereby increasing the annotation coverage.


Subject(s)
COVID-19 , Electronic Health Records , Humans , Pandemics , SARS-CoV-2
3.
J Biomed Semantics ; 13(1): 25, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271389

ABSTRACT

BACKGROUND: The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the development of the community-based Coronavirus Infectious Disease Ontology (CIDO) in early 2020. RESULTS: As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 100 COVID-19 terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in these PPIs. CIDO has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has been used in various applications such as term standardization, inference, natural language processing (NLP) and clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences between SARS-CoV-2 Delta and Omicron variants. CIDO's integrative host-coronavirus PPIs and drug-target knowledge has also been used to support drug repurposing for COVID-19 treatment. CONCLUSION: CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on COVID-19. It supports shared knowledge representation, data and metadata standardization and integration, and has been used in a range of applications.


Subject(s)
COVID-19 , Communicable Diseases , Coronavirus , Vaccines , Humans , SARS-CoV-2 , Pandemics , Amino Acids , COVID-19 Drug Treatment
4.
JMIR Public Health Surveill ; 8(5): e35311, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35486806

ABSTRACT

BACKGROUND: COVID-19 messenger RNA (mRNA) vaccines have demonstrated efficacy and effectiveness in preventing symptomatic COVID-19, while being relatively safe in trial studies. However, vaccine breakthrough infections have been reported. OBJECTIVE: This study aims to identify risk factors associated with COVID-19 breakthrough infections among fully mRNA-vaccinated individuals. METHODS: We conducted a series of observational retrospective analyses using the electronic health records (EHRs) of the Columbia University Irving Medical Center/New York Presbyterian (CUIMC/NYP) up to September 21, 2021. New York City (NYC) adult residences with at least 1 polymerase chain reaction (PCR) record were included in this analysis. Poisson regression was performed to assess the association between the breakthrough infection rate in vaccinated individuals and multiple risk factors-including vaccine brand, demographics, and underlying conditions-while adjusting for calendar month, prior number of visits, and observational days in the EHR. RESULTS: The overall estimated breakthrough infection rate was 0.16 (95% CI 0.14-0.18). Individuals who were vaccinated with Pfizer/BNT162b2 (incidence rate ratio [IRR] against Moderna/mRNA-1273=1.66, 95% CI 1.17-2.35) were male (IRR against female=1.47, 95% CI 1.11-1.94) and had compromised immune systems (IRR=1.48, 95% CI 1.09-2.00) were at the highest risk for breakthrough infections. Among all underlying conditions, those with primary immunodeficiency, a history of organ transplant, an active tumor, use of immunosuppressant medications, or Alzheimer disease were at the highest risk. CONCLUSIONS: Although we found both mRNA vaccines were effective, Moderna/mRNA-1273 had a lower incidence rate of breakthrough infections. Immunocompromised and male individuals were among the highest risk groups experiencing breakthrough infections. Given the rapidly changing nature of the SARS-CoV-2 pandemic, continued monitoring and a generalizable analysis pipeline are warranted to inform quick updates on vaccine effectiveness in real time.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adult , BNT162 Vaccine/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Female , Humans , Male , New York City/epidemiology , Retrospective Studies , Risk Factors
5.
J Biomed Inform ; 120: 103861, 2021 08.
Article in English | MEDLINE | ID: mdl-34224898

ABSTRACT

The current intensive research on potential remedies and vaccinations for COVID-19 would greatly benefit from an ontology of standardized COVID terms. The Coronavirus Infectious Disease Ontology (CIDO) is the largest among several COVID ontologies, and it keeps growing, but it is still a medium sized ontology. Sophisticated CIDO users, who need more than searching for a specific concept, require orientation and comprehension of CIDO. In previous research, we designed a summarization network called "partial-area taxonomy" to support comprehension of ontologies. The partial-area taxonomy for CIDO is of smaller magnitude than CIDO, but is still too large for comprehension. We present here the "weighted aggregate taxonomy" of CIDO, designed to provide compact views at various granularities of our partial-area taxonomy (and the CIDO ontology). Such a compact view provides a "big picture" of the content of an ontology. In previous work, in the visualization patterns used for partial-area taxonomies, the nodes were arranged in levels according to the numbers of relationships of their concepts. Applying this visualization pattern to CIDO's weighted aggregate taxonomy resulted in an overly long and narrow layout that does not support orientation and comprehension since the names of nodes are barely readable. Thus, we introduce in this paper an innovative visualization of the weighted aggregate taxonomy for better orientation and comprehension of CIDO (and other ontologies). A measure for the efficiency of a layout is introduced and is used to demonstrate the advantage of the new layout over the previous one. With this new visualization, the user can "see the forest for the trees" of the ontology. Benefits of this visualization in highlighting insights into CIDO's content are provided. Generality of the new layout is demonstrated.


Subject(s)
Biological Ontologies , COVID-19 , Communicable Diseases , Comprehension , Humans , SARS-CoV-2
6.
BMC Med Inform Decis Mak ; 20(Suppl 10): 305, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33319709

ABSTRACT

BACKGROUND: Ontologies house various kinds of domain knowledge in formal structures, primarily in the form of concepts and the associative relationships between them. Ontologies have become integral components of many health information processing environments. Hence, quality assurance of the conceptual content of any ontology is critical. Relationships are foundational to the definition of concepts. Missing relationship errors (i.e., unintended omissions of important definitional relationships) can have a deleterious effect on the quality of an ontology. An abstraction network is a structure that overlays an ontology and provides an alternate, summarization view of its contents. One kind of abstraction network is called an area taxonomy, and a variation of it is called a subtaxonomy. A methodology based on these taxonomies for more readily finding missing relationship errors is explored. METHODS: The area taxonomy and the subtaxonomy are deployed to help reveal concepts that have a high likelihood of exhibiting missing relationship errors. A specific top-level grouping unit found within the area taxonomy and subtaxonomy, when deemed to be anomalous, is used as an indicator that missing relationship errors are likely to be found among certain concepts. Two hypotheses pertaining to the effectiveness of our Quality Assurance approach are studied. RESULTS: Our Quality Assurance methodology was applied to the Biological Process hierarchy of the National Cancer Institute thesaurus (NCIt) and SNOMED CT's Eye/vision finding subhierarchy within its Clinical finding hierarchy. Many missing relationship errors were discovered and confirmed in our analysis. For both test-bed hierarchies, our Quality Assurance methodology yielded a statistically significantly higher number of concepts with missing relationship errors in comparison to a control sample of concepts. Two hypotheses are confirmed by these findings. CONCLUSIONS: Quality assurance is a critical part of an ontology's lifecycle, and automated or semi-automated tools for supporting this process are invaluable. We introduced a Quality Assurance methodology targeted at missing relationship errors. Its successful application to the NCIt's Biological Process hierarchy and SNOMED CT's Eye/vision finding subhierarchy indicates that it can be a useful addition to the arsenal of tools available to ontology maintenance personnel.


Subject(s)
Systematized Nomenclature of Medicine , Vocabulary, Controlled , Electronic Data Processing , Humans , Probability
7.
BMC Med Inform Decis Mak ; 20(Suppl 10): 296, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33319713

ABSTRACT

BACKGROUND: Summarization networks are compact summaries of ontologies. The "Big Picture" view offered by summarization networks enables to identify sets of concepts that are more likely to have errors than control concepts. For ontologies that have outgoing lateral relationships, we have developed the "partial-area taxonomy" summarization network. Prior research has identified one kind of outlier concepts, concepts of small partials-areas within partial-area taxonomies. Previously we have shown that the small partial-area technique works successfully for four ontologies (or their hierarchies). METHODS: To improve the Quality Assurance (QA) scalability, a family-based QA framework, where one QA technique is potentially applicable to a whole family of ontologies with similar structural features, was developed. The 373 ontologies hosted at the NCBO BioPortal in 2015 were classified into a collection of families based on structural features. A meta-ontology represents this family collection, including one family of ontologies having outgoing lateral relationships. The process of updating the current meta-ontology is described. To conclude that one QA technique is applicable for at least half of the members for a family F, this technique should be demonstrated as successful for six out of six ontologies in F. We describe a hypothesis setting the condition required for a technique to be successful for a given ontology. The process of a study to demonstrate such success is described. This paper intends to prove the scalability of the small partial-area technique. RESULTS: We first updated the meta-ontology classifying 566 BioPortal ontologies. There were 371 ontologies in the family with outgoing lateral relationships. We demonstrated the success of the small partial-area technique for two ontology hierarchies which belong to this family, SNOMED CT's Specimen hierarchy and NCIt's Gene hierarchy. Together with the four previous ontologies from the same family, we fulfilled the "six out of six" condition required to show the scalability for the whole family. CONCLUSIONS: We have shown that the small partial-area technique can be potentially successful for the family of ontologies with outgoing lateral relationships in BioPortal, thus improve the scalability of this QA technique.


Subject(s)
Biological Ontologies , Humans , Systematized Nomenclature of Medicine
8.
J Biomed Inform ; 112: 103607, 2020 12.
Article in English | MEDLINE | ID: mdl-33098987

ABSTRACT

The comprehensive modeling and hierarchical positioning of a new concept in an ontology heavily relies on its set of proper subsumption relationships (IS-As) to other concepts. Identifying a concept's IS-A relationships is a laborious task requiring curators to have both domain knowledge and terminology skills. In this work, we propose a method to automatically predict the presence of IS-A relationships between a new concept and pre-existing concepts based on the language representation model BERT. This method converts the neighborhood network of a concept into "sentences" and harnesses BERT's Next Sentence Prediction (NSP) capability of predicting the adjacency of two sentences. To augment our method's performance, we refined the training data by employing an ontology summarization technique. We trained our model with the two largest hierarchies of the SNOMED CT 2017 July release and applied it to predicting the parents of new concepts added in the SNOMED CT 2018 January release. The results showed that our method achieved an average F1 score of 0.88, and the average Recall score improves slightly from 0.94 to 0.96 by using the ontology summarization technique.


Subject(s)
Biological Ontologies , Systematized Nomenclature of Medicine , Language , Natural Language Processing
9.
J Am Med Inform Assoc ; 27(10): 1625-1638, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32766692

ABSTRACT

OBJECTIVE: The study sought to describe the literature related to the development of methods for auditing the Unified Medical Language System (UMLS), with particular attention to identifying errors and inconsistencies of attributes of the concepts in the UMLS Metathesaurus. MATERIALS AND METHODS: We applied the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach by searching the MEDLINE database and Google Scholar for studies referencing the UMLS and any of several terms related to auditing, error detection, and quality assurance. A qualitative analysis and summarization of articles that met inclusion criteria were performed. RESULTS: Eighty-three studies were reviewed in detail. We first categorized techniques based on various aspects including concepts, concept names, and synonymy (n = 37), semantic type assignments (n = 36), hierarchical relationships (n = 24), lateral relationships (n = 12), ontology enrichment (n = 8), and ontology alignment (n = 18). We also categorized the methods according to their level of automation (ie, automated systematic, automated heuristic, or manual) and the type of knowledge used (ie, intrinsic or extrinsic knowledge). CONCLUSIONS: This study is a comprehensive review of the published methods for auditing the various conceptual aspects of the UMLS. Categorizing the auditing techniques according to the various aspects will enable the curators of the UMLS as well as researchers comprehensive easy access to this wealth of knowledge (eg, for auditing lateral relationships in the UMLS). We also reviewed ontology enrichment and alignment techniques due to their critical use of and impact on the UMLS.


Subject(s)
Quality Control , Unified Medical Language System , Computer Heuristics , Semantic Web
10.
AMIA Annu Symp Proc ; 2019: 972-981, 2019.
Article in English | MEDLINE | ID: mdl-32308894

ABSTRACT

As a step toward learning to automatically insert new concepts into a large biomedical ontology, we are studying the easier problem of automatically verifying that an IS-A link should exist between a new child concept and an existing parent concept. We are using a Convolutional Neural Network, a powerful machine learning method. However, results depend on the quality of the training data. We use SNOMED CT (July 2017) for training and the subsequent release for testing. The main problem is to find a good set of negative training data. We experiment with two approaches, based on uncle-nephew (not connected) pairs of concepts. We contrast using the complete Clinical Finding hierarchy of SNOMED CT with using the powerful Area Taxonomy ontology summarization mechanism to constrain the training data. The results for the task of verifying IS-A links are improved by 8.6% when going from the complete hierarchy to the Area Taxonomy.


Subject(s)
Machine Learning , Neural Networks, Computer , Systematized Nomenclature of Medicine , Biological Ontologies , Deep Learning
11.
AMIA Annu Symp Proc ; 2019: 1129-1138, 2019.
Article in English | MEDLINE | ID: mdl-32308910

ABSTRACT

With advances in Machine Learning (ML), neural network-based methods, such as Convolutional/Recurrent Neural Networks, have been proposed to assist terminology curators in the development and maintenance of terminologies. Bidirectional Encoder Representations from Transformers (BERT), a new language representation model, obtains state-of-the-art results on a wide array of general English NLP tasks. We explore BERT's applicability to medical terminology-related tasks. Utilizing the "next sentence prediction" capability of BERT, we show that the Fine-tuning strategy of Transfer Learning (TL) from the BERTBASE model can address a challenging problem in automatic terminology enrichment - insertion of new concepts. Adding a pre-training strategy enhances the results. We apply our strategies to the two largest hierarchies of SNOMED CT, with one release as training data and the following release as test data. The performance of the combined two proposed TL models achieves an average F1 score of 0.85 and 0.86 for the two hierarchies, respectively.


Subject(s)
Machine Learning , Natural Language Processing , Subject Headings , Systematized Nomenclature of Medicine , Neural Networks, Computer
13.
J Biomed Inform ; 83: 135-149, 2018 07.
Article in English | MEDLINE | ID: mdl-29852316

ABSTRACT

In previous research, we have demonstrated for a number of ontologies that structurally complex concepts (for different definitions of "complex") in an ontology are more likely to exhibit errors than other concepts. Thus, such complex concepts often become fertile ground for quality assurance (QA) in ontologies. They should be audited first. One example of complex concepts is given by "overlapping concepts" (to be defined below.) Historically, a different auditing methodology had to be developed for every single ontology. For better scalability and efficiency, it is desirable to identify family-wide QA methodologies. Each such methodology would be applicable to a whole family of similar ontologies. In past research, we had divided the 685 ontologies of BioPortal into families of structurally similar ontologies. We showed for four ontologies of the same large family in BioPortal that "overlapping concepts" are indeed statistically significantly more likely to exhibit errors. In order to make an authoritative statement concerning the success of "overlapping concepts" as a methodology for a whole family of similar ontologies (or of large subhierarchies of ontologies), it is necessary to show that "overlapping concepts" have a higher likelihood of errors for six out of six ontologies of the family. In this paper, we are demonstrating for two more ontologies that "overlapping concepts" can successfully predict groups of concepts with a higher error rate than concepts from a control group. The fifth ontology is the Neoplasm subhierarchy of the National Cancer Institute thesaurus (NCIt). The sixth ontology is the Infectious Disease subhierarchy of SNOMED CT. We demonstrate quality assurance results for both of them. Furthermore, in this paper we observe two novel, important, and useful phenomena during quality assurance of "overlapping concepts." First, an erroneous "overlapping concept" can help with discovering other erroneous "non-overlapping concepts" in its vicinity. Secondly, correcting erroneous "overlapping concepts" may turn them into "non-overlapping concepts." We demonstrate that this may reduce the complexity of parts of the ontology, which in turn makes the ontology more comprehensible, simplifying maintenance and use of the ontology.


Subject(s)
Biological Ontologies , Electronic Data Processing/methods , National Cancer Institute (U.S.) , Systematized Nomenclature of Medicine , United States , Vocabulary, Controlled
14.
AMIA Annu Symp Proc ; 2018: 750-759, 2018.
Article in English | MEDLINE | ID: mdl-30815117

ABSTRACT

Many major medical ontologies go through a regular (bi-annual, monthly, etc.) release cycle. A new release will contain corrections to the previous release, as well as genuinely new concepts that are the result of either user requests or new developments in the domain. New concepts need to be placed at the correct place in the ontology hierarchy. Traditionally, this is done by an expert modeling a new concept and running a classifier algorithm. We propose an alternative approach that is based on providing only the name of a new concept and using a Convolutional Neural Network-based machine learning method. We first tested this approach within one version of SNOMED CT and achieved an average 88.5% precision and an F1 score of 0.793. In comparing the July 2017 release with the January 2018 release, limiting ourselves to predicting one out of two or more parents, our average F1 score was 0.701.


Subject(s)
Machine Learning , Neural Networks, Computer , Systematized Nomenclature of Medicine , Support Vector Machine
15.
AMIA Annu Symp Proc ; 2018: 1157-1166, 2018.
Article in English | MEDLINE | ID: mdl-30815158

ABSTRACT

SNOMED CT is a large, complex and widely-used terminology. Auditing is part of the life cycle of terminologies. A review of terminologies' content can identify two error categories: commission errors, such as an incorrect parent or attribute relationship, indicating errors in a concept's modeling, and omission errors, such as missing a parent or attribute relationship, representing incomplete modeling of a concept. According to our experience, terminology curators are mostly interested in commission errors. In recent years, a long-term remodeling project has addressed modeling issues in SNOMED CT's Infectious disease and Congenital disease subhierarchies. In this longitudinal study, we investigated a posteriori the efficacy of complex concepts, called overlapping concepts, to identify commission errors during intensive auditing periods and during maintenance periods over several releases. The algorithmic implication is that when auditing resources are scarce, a methodology of auditing first, or only, the overlapping concepts will obtain a higher auditing yield.


Subject(s)
Subject Headings , Systematized Nomenclature of Medicine , Classification , Longitudinal Studies , Medical Records , Software
16.
J Healthc Eng ; 2017: 3495723, 2017.
Article in English | MEDLINE | ID: mdl-29158885

ABSTRACT

Ontologies are important components of health information management systems. As such, the quality of their content is of paramount importance. It has been proven to be practical to develop quality assurance (QA) methodologies based on automated identification of sets of concepts expected to have higher likelihood of errors. Four kinds of such sets (called QA-sets) organized around the themes of complex and uncommonly modeled concepts are introduced. A survey of different methodologies based on these QA-sets and the results of applying them to various ontologies are presented. Overall, following these approaches leads to higher QA yields and better utilization of QA personnel. The formulation of additional QA-set methodologies will further enhance the suite of available ontology QA tools.


Subject(s)
Biological Ontologies , Classification , Quality Assurance, Health Care , Humans
17.
J Biomed Inform ; 73: 30-42, 2017 09.
Article in English | MEDLINE | ID: mdl-28723580

ABSTRACT

The National Drug File - Reference Terminology (NDF-RT) is a large and complex drug terminology consisting of several classification hierarchies on top of an extensive collection of drug concepts. These hierarchies provide important information about clinical drugs, e.g., their chemical ingredients, mechanisms of action, dosage form and physiological effects. Within NDF-RT such information is represented using tens of thousands of roles connecting drugs to classifications. In previous studies, we have introduced various kinds of Abstraction Networks to summarize the content and structure of terminologies in order to facilitate their visual comprehension, and support quality assurance of terminologies. However, these previous kinds of Abstraction Networks are not appropriate for summarizing the NDF-RT classification hierarchies, due to its unique structure. In this paper, we present the novel Ingredient Abstraction Network (IAbN) to summarize, visualize and support the audit of NDF-RT's Chemical Ingredients hierarchy and its associated drugs. A common theme in our quality assurance framework is to use characterizations of sets of concepts, revealed by the Abstraction Network structure, to capture concepts, the modeling of which is more complex than for other concepts. For the IAbN, we characterize drug ingredient concepts as more complex if they belong to IAbN groups with multiple parent groups. We show that such concepts have a statistically significantly higher rate of errors than a control sample and identify two especially common patterns of errors.


Subject(s)
Pharmaceutical Preparations , Terminology as Topic , Vocabulary, Controlled , Humans , Quality Control
18.
J Biomed Inform ; 71: 165-177, 2017 07.
Article in English | MEDLINE | ID: mdl-28583809

ABSTRACT

Biomedical ontologies often reuse content (i.e., classes and properties) from other ontologies. Content reuse enables a consistent representation of a domain and reusing content can save an ontology author significant time and effort. Prior studies have investigated the existence of reused terms among the ontologies in the NCBO BioPortal, but as of yet there has not been a study investigating how the ontologies in BioPortal utilize reused content in the modeling of their own content. In this study we investigate how 355 ontologies hosted in the NCBO BioPortal reuse content from other ontologies for the purposes of creating new ontology content. We identified 197 ontologies that reuse content. Among these ontologies, 108 utilize reused classes in the modeling of their own classes and 116 utilize reused properties in class restrictions. Current utilization of reuse and quality issues related to reuse are discussed.


Subject(s)
Biological Ontologies , Software , Vocabulary, Controlled , Quality Control
19.
Artif Intell Med ; 79: 9-14, 2017 06.
Article in English | MEDLINE | ID: mdl-28532962

ABSTRACT

OBJECTIVE: To examine whether disjoint partial-area taxonomy, a semantically-based evaluation methodology that has been successfully tested in SNOMED CT, will perform with similar effectiveness on Uberon, an anatomical ontology that belongs to a structurally similar family of ontologies as SNOMED CT. METHOD: A disjoint partial-area taxonomy was generated for Uberon. One hundred randomly selected test concepts that overlap between partial-areas were matched to a same size control sample of non-overlapping concepts. The samples were blindly inspected for non-critical issues and presumptive errors first by a general domain expert whose results were then confirmed or rejected by a highly experienced anatomical ontology domain expert. Reported issues were subsequently reviewed by Uberon's curators. RESULTS: Overlapping concepts in Uberon's disjoint partial-area taxonomy exhibited a significantly higher rate of all issues. Clear-cut presumptive errors trended similarly but did not reach statistical significance. A sub-analysis of overlapping concepts with three or more relationship types indicated a much higher rate of issues. CONCLUSIONS: Overlapping concepts from Uberon's disjoint abstraction network are quite likely (up to 28.9%) to exhibit issues. The results suggest that the methodology can transfer well between same family ontologies. Although Uberon exhibited relatively few overlapping concepts, the methodology can be combined with other semantic indicators to expand the process to other concepts within the ontology that will generate high yields of discovered issues.


Subject(s)
Semantics , Systematized Nomenclature of Medicine , Biological Ontologies
20.
Methods Inf Med ; 56(3): 200-208, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28244549

ABSTRACT

OBJECTIVES: Ontologies are knowledge structures that lend support to many health-information systems. A study is carried out to assess the quality of ontological concepts based on a measure of their complexity. The results show a relation between complexity of concepts and error rates of concepts. METHODS: A measure of lateral complexity defined as the number of exhibited role types is used to distinguish between more complex and simpler concepts. Using a framework called an area taxonomy, a kind of abstraction network that summarizes the structural organization of an ontology, concepts are divided into two groups along these lines. Various concepts from each group are then subjected to a two-phase QA analysis to uncover and verify errors and inconsistencies in their modeling. A hierarchy of the National Cancer Institute thesaurus (NCIt) is used as our test-bed. A hypothesis pertaining to the expected error rates of the complex and simple concepts is tested. RESULTS: Our study was done on the NCIt's Biological Process hierarchy. Various errors, including missing roles, incorrect role targets, and incorrectly assigned roles, were discovered and verified in the two phases of our QA analysis. The overall findings confirmed our hypothesis by showing a statistically significant difference between the amounts of errors exhibited by more laterally complex concepts vis-à-vis simpler concepts. CONCLUSIONS: QA is an essential part of any ontology's maintenance regimen. In this paper, we reported on the results of a QA study targeting two groups of ontology concepts distinguished by their level of complexity, defined in terms of the number of exhibited role types. The study was carried out on a major component of an important ontology, the NCIt. The findings suggest that more complex concepts tend to have a higher error rate than simpler concepts. These findings can be utilized to guide ongoing efforts in ontology QA.


Subject(s)
Biological Ontologies , Comprehension , Meaningful Use/standards , Models, Statistical , National Cancer Institute (U.S.)/standards , Neoplasms/classification , Computer Simulation , Humans , Natural Language Processing , Quality Assurance, Health Care/standards , United States , Vocabulary, Controlled
SELECTION OF CITATIONS
SEARCH DETAIL
...