Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(15): 44963-44984, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36701059

ABSTRACT

Phytomanagement is a concept fit for a bio-based circular economy that combines phytotechnologies and biomass production for non-food purposes. Here, ten annual and perennial industrial non-food crops (Sorghum Biomass 133, Sorghum Santa Fe red, Linum usitatissimum L., Eucalyptus sp., Salix Inger, Salix Tordis, Beta vulgaris L., Phacelia tanacetifolia Benth., Malva sylvestris L., and Chenopodium album L.) were studied under field conditions for phytomanaging a metal (Cd, Cu, Pb, and Zn)-contaminated dredged sediment in the North of France. The crops were selected according to their relevance to pedoclimatic and future climatic conditions, and one or more non-food end-products were proposed for each plant part collected, such as biogas, bioethanol, compost, natural dye, ecocatalyst, and fiber. Based on the soil-plant transfer of metals, eight out of the crops cultivated on field plots exhibited an excluder behavior (bioconcentration factor, BCF < 1), a trait suitable for phytostabilization. However, these crops did not change the metal mobilities in the dredged sediment. The BCF < 1 was not sufficient to characterize the excluder behavior of crops as this factor depended on the total dredged-sediment contaminant. Therefore, a BCF group ranking method was proposed accounting for metal phytotoxicity levels or yield decrease as a complemental way to discuss the crop behavior. The feasibility of the biomass-processing chains was discussed based on these results and according to a survey of available legislation in standard and scientific literature.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil Pollutants/analysis , Metals/analysis , Soil , Plant Roots/chemistry , France , Biodegradation, Environmental
2.
Environ Sci Pollut Res Int ; 28(44): 62155-62173, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34184234

ABSTRACT

Phytomanagement uses plants and soil conditioners to create value on contaminated land while minimizing environmental risk. This work was carried out on a metal(loid)-contaminated site and aimed at assessing the suitability of Salvia sclarea L. (sage) and Coriandrum sativum L. (coriander) combined with an arbuscular mycorrhizal fungus (AMF) inoculant to immobilize metal(loid)s and produce essential oils (EO). The effect of the inoculant on the transfer of metal(loid)s (ML, i.e., Cd, Cu, Pb, Zn, As, Ni, and Sb) to plants and the ML soil mobility were investigated. The ML concentrations in EO from both plant species and the valorization options for the distillation residues (soil conditioner, animal fodder, and anaerobic digestion) were studied. Sage was a suitable candidate for this value chain because it presents an excluder phenotype and the residues of oil extraction could be used as a soil conditioner. The metal concentrations in the sage EO were similar to those obtained from plants cultivated on an uncontaminated soil. These results indicate the suitability of sage harvested on the contaminated soil according to the ML fate in the whole value chain. Like the EO of sage, ML concentrations in the coriander EO did not differ from those in the commercial EO that were obtained from plants grown on uncontaminated soil. However, the use of distillation residues of coriander was limited by their relatively elevated Cd concentrations. The use of a mycorrhizal inoculum did not decrease the Cd mobility in soil for the coriander.


Subject(s)
Metals, Heavy , Oils, Volatile , Plants, Medicinal , Soil Pollutants , Biodegradation, Environmental , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
3.
Sci Total Environ ; 789: 147944, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34062469

ABSTRACT

Due to the presence of trace element (TE) in agricultural soils, wide areas are unproper for food production and the clean-up of soil is not a feasible option. Considering the potential remediation options, the use of aromatic plants producing a high quantity of biomass and developing high-added value sectors such as essential oil (EO) production could be valuable regarding one of the phytomanagement objectives, i.e. the restoration of an economic activity. The purpose of this study was hence to evaluate in situ the suitability of two aromatic crops, clary sage and coriander, for the phytomanagement of aged TE-polluted soils, taking into account plants' growth, development and biomass production, essential oil (EO) content and quality as well as a techno-economic feasibility analysis of the channel. In situ experiments have been carried out on two agricultural plots of 1.5 ha, a TE-polluted one (Pb: 394 ppm - Zn: 443 ppm - Cd: 7.2 ppm) and an unpolluted one (Pb: 22 ppm - Zn: 48 ppm - Cd: 0.4 ppm). Our findings have shown the ability of coriander and sage to grow similarly on both unpolluted and TE-polluted soil and to produce significant amounts of biomass. The pesticide residue and TE analyses have demonstrated that the EO only contained trace amounts of the contaminants, below or close to the limit of quantification of the method used and similar to marketed products. Mycorrhizal inoculation has also shown promising results by increasing the colonization rates of both aromatic plants, but did not result in higher biomass or EO amounts. Our study brings new evidence towards the potential of clary sage to be used for the phytomanagement of TE-polluted areas, given its perennial vegetation cover, tolerance to TE and obtained EO yields.


Subject(s)
Oils, Volatile , Soil Pollutants , Trace Elements , Biodegradation, Environmental , Biomass , Soil , Soil Pollutants/analysis , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...