Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ASAIO J ; 67(10): 1100-1108, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34138778

ABSTRACT

The CARMAT-Total Artificial Heart (C-TAH) is designed to provide heart replacement therapy for patients with end-stage biventricular failure. This report details the reliability and efficacy of the autoregulation device control mechanism (auto-mode), designed to mimic normal physiologic responses to changing patient needs. Hemodynamic data from a continuous cohort of 10 patients implanted with the device, recorded over 1,842 support days in auto-mode, were analyzed with respect to daily changing physiologic needs. The C-TAH uses embedded pressure sensors to regulate the pump output. Right and left ventricular outputs are automatically balanced. The operator sets target values and the inbuilt algorithm adjusts the stroke volume and beat rate, and hence cardiac output, automatically. Auto-mode is set perioperatively after initial postcardiopulmonary bypass hemodynamic stabilization. All patients showed a range of average inflow pressures of between 5 and 20 mm Hg during their daily activities, resulting in cardiac output responses of between 4.3 and 7.3 L/min. Operator adjustments were cumulatively only required on 20 occasions. This report demonstrates that the C-TAH auto-mode effectively produces appropriate physiologic responses reflective of changing patients' daily needs and represents one of the unique characteristics of this device in providing almost physiologic heart replacement therapy.


Subject(s)
Heart Failure , Heart, Artificial , Blood Pressure , Heart Failure/surgery , Hemodynamics , Homeostasis , Humans , Reproducibility of Results
2.
Thromb Haemost ; 120(9): 1313-1322, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32688422

ABSTRACT

Pulsatile Carmat bioprosthetic total artificial heart (C-TAH) is designed to be implanted in patients with biventricular end-stage heart failure. Since flow variation might contribute to endothelial dysfunction, we explored circulating endothelial biomarkers after C-TAH implantation in seven patients and compared the manual and autoregulated mode. Markers of endothelial dysfunction and regeneration were compared before and during a 6- to 9-month follow-up after implantation. The follow-up was divided into three periods (< 3, 3-6, and > 6 months) and used to estimate the temporal trends during the study period. A linear mixed model was used to analyze repeated measures and association between tested parameters according to the mode of C-TAH and the time. Relevance of soluble endoglin (sEndoglin) level increase has been tested on differentiation and migration potential of human vasculogenic progenitor cells (endothelial colony forming cells [ECFCs]). Normal sEndoglin and soluble endothelial protein C receptor (sEPCR) levels were found in patients after implantation with autoregulated C-TAH, whereas they significantly increased in the manual mode, as compared with pretransplant values (p = 0.005 and 0.001, respectively). In the autoregulated mode, a significant increase in the mobilization of cytokine stromal cell-derived factor 1 was found (p = 0.03). After adjustment on the mode of C-TAH, creatinine or C-reactive protein level, sEndoglin, and sEPCR, were found significantly associated with plasma total protein levels. Moreover, a significant decrease in pseudotubes formation and migration ability was observed in vitro in ECFCs receiving sEndoglin activation. Our combined analysis of endothelial biomarkers confirms the favorable impact of blood flow variation achieved with autoregulation in patients implanted with the bioprosthetic total artificial heart.


Subject(s)
Bioprosthesis , Endothelium/pathology , Heart, Artificial , Aged , Biomarkers/analysis , Endoglin/analysis , Endothelial Protein C Receptor/analysis , Follow-Up Studies , Heart Failure/therapy , Homeostasis , Humans , Male
4.
Eur J Cardiothorac Surg ; 47(5): e172-8; discussion e178-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25719178

ABSTRACT

OBJECTIVES: The Carmat bioprosthetic total artificial heart (TAH) contains bioprosthetic blood-contacting surfaces, and is designed for orthotopic cardiac replacement. In preparation for clinical studies, we evaluated the TAH performance and its effects on end-organ function in an animal model. METHODS: Twelve female Charolais calves, 2-3 months of age and weighing 102-122 kg, were implanted with the TAH through a mid-sternotomy to ensure an adequate anatomic fit. The intended support duration was 4-10 days. Haematological values, creatinine, bilirubin and lactate levels were measured and mean arterial and central venous pressure, central venous oxygen saturation and TAH parameters were monitored. RESULTS: The calves were placed in a cage immediately postoperatively, and extubated on postoperative day 1 in most cases. Average support duration was 3 days, with 4 of 12 calves supported for 4, 4, 8 and 10 days. The initial procedures were used to refine surgical techniques and postoperative care. Pump output ranged from 7.3 to 10 l/min. Haemodynamic parameters and blood analysis were within acceptable ranges. No device failures occurred. No anticoagulation was used in the postoperative phase. The calves were euthanized in case of discomfort compromising the animal well-being, such as respiratory dysfunction, severe blood loss and cerebral dysfunction. Device explant analysis showed no thrombus formation inside the blood cavities. Histological examination of kidneys showed isolated micro-infarction in 2/12 animals; brain histology revealed no thromboembolic depositions. CONCLUSION: The Carmat bioprosthetic TAH implanted in calves up to 10 days provided adequate blood flow to organs and tissues. Low levels of haemolysis and no visible evidence of thromboembolic depositions in major organs and device cavities, without the use of anticoagulation, may indicate early-phase haemocompatibility of the TAH.


Subject(s)
Bioprosthesis , Heart Failure/surgery , Heart, Artificial , Prosthesis Implantation/methods , Animals , Cattle , Disease Models, Animal , Female , Heart Transplantation , Prosthesis Design
SELECTION OF CITATIONS
SEARCH DETAIL
...