Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
J Forensic Sci ; 65(2): 380-398, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31580496

ABSTRACT

Most DNA evidence is a mixture of two or more people. Cybergenetics TrueAllele® system uses Bayesian computing to separate genotypes from mixture data and compare genotypes to calculate likelihood ratio (LR) match statistics. This validation study examined the reliability of TrueAllele computing on laboratory-generated DNA mixtures containing up to ten unknown contributors. Using log(LR) match information, the study measured sensitivity, specificity, and reproducibility. These reliability metrics were assessed under different conditions, including varying the number of assumed contributors, statistical sampling duration, and setting known genotypes. The main determiner of match information and variability was how much DNA a person contributed to a mixture. Observed contributor number based on data peaks gave better results than the number known from experimental design. The study found that TrueAllele is a reliable method for analyzing DNA mixtures containing up to ten unknown contributors.


Subject(s)
DNA Fingerprinting/methods , DNA/genetics , Likelihood Functions , Models, Genetic , Software , Alleles , Genotype , Humans , Microsatellite Repeats , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity
3.
Heliyon ; 4(10): e00824, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30310872

ABSTRACT

Natural variation in biological evidence leads to uncertain genotypes. Forensic comparison of a probabilistic genotype with a person's reference gives a numerical strength of DNA association. The distribution of match strength for all possible references usefully represents a genotype's potential information. But testing more genetic loci exponentially increases the number of multi-locus possibilities, making direct computation infeasible. At each locus, Bayesian probability can quickly assemble a match strength random variable. Multi-locus match strength is the sum of these independent variables. A multi-locus genotype's match strength distribution is efficiently constructed by convolving together the separate locus distributions. This convolution construction can accurately collate all trillion trillion reference outcomes in a fraction of a second. This paper shows how to rapidly construct multi-locus match strength distributions by convolution. Function convergence demonstrates that distribution accuracy increases with numerical resolution. Convolution construction has quadratic computational complexity, relative to the exponential number of reference genotypes. A suitably defined random variable reduces high-dimensional computational cost to fast real-line arithmetic. Match strength distributions are used in forensic validation studies. They provide error rates for match results. The convolution construction applies to discrete or continuous variables in the forensic, natural and social sciences. Computer-derived match strength distributions elicit the information inherent in DNA evidence, often overlooked by human analysis.

4.
J Forensic Sci ; 60(4): 857-68, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26189920

ABSTRACT

Computer methods have been developed for mathematically interpreting mixed and low-template DNA. The genotype modeling approach computationally separates out the contributors to a mixture, with uncertainty represented through probability. Comparison of inferred genotypes calculates a likelihood ratio (LR), which measures identification information. This study statistically examined the genotype modeling performance of Cybergenetics TrueAllele(®) computer system. High- and low-template DNA mixtures of known randomized composition containing 2, 3, 4, and 5 contributors were tested. Sensitivity, specificity, and reproducibility were established through LR quantification in each of these eight groups. Covariance analysis found LR behavior to be relatively invariant to DNA amount or contributor number. Analysis of variance found that consistent solutions were produced, once a sufficient number of contributors were considered. This study demonstrates the reliability of TrueAllele interpretation on complex DNA mixtures of representative casework composition. The results can help predict an information outcome for a DNA mixture analysis.


Subject(s)
Computer Simulation , DNA Fingerprinting/methods , DNA/genetics , Genotype , Software , Forensic Genetics , Humans , Likelihood Functions , Microsatellite Repeats , Models, Statistical , Reproducibility of Results
5.
PLoS One ; 9(3): e92837, 2014.
Article in English | MEDLINE | ID: mdl-24667531

ABSTRACT

Mixtures are a commonly encountered form of biological evidence that contain DNA from two or more contributors. Laboratory analysis of mixtures produces data signals that usually cannot be separated into distinct contributor genotypes. Computer modeling can resolve the genotypes up to probability, reflecting the uncertainty inherent in the data. Human analysts address the problem by simplifying the quantitative data in a threshold process that discards considerable identification information. Elevated stochastic threshold levels potentially discard more information. This study examines three different mixture interpretation methods. In 72 criminal cases, 111 genotype comparisons were made between 92 mixture items and relevant reference samples. TrueAllele computer modeling was done on all the evidence samples, and documented in DNA match reports that were provided as evidence for each case. Threshold-based Combined Probability of Inclusion (CPI) and stochastically modified CPI (mCPI) analyses were performed as well. TrueAllele's identification information in 101 positive matches was used to assess the reliability of its modeling approach. Comparison was made with 81 CPI and 53 mCPI DNA match statistics that were manually derived from the same data. There were statistically significant differences between the DNA interpretation methods. TrueAllele gave an average match statistic of 113 billion, CPI averaged 6.68 million, and mCPI averaged 140. The computer was highly specific, with a false positive rate under 0.005%. The modeling approach was precise, having a factor of two within-group standard deviation. TrueAllele accuracy was indicated by having uniformly distributed match statistics over the data set. The computer could make genotype comparisons that were impossible or impractical using manual methods. TrueAllele computer interpretation of DNA mixture evidence is sensitive, specific, precise, accurate and more informative than manual interpretation alternatives. It can determine DNA match statistics when threshold-based methods cannot. Improved forensic science computation can affect criminal cases by providing reliable scientific evidence.


Subject(s)
Alleles , Criminal Law , DNA , Electronic Data Processing , Forensic Genetics/methods , Models, Theoretical , Female , Forensic Genetics/instrumentation , Forensic Genetics/legislation & jurisprudence , Humans , Male , Virginia
6.
J Forensic Sci ; 58(6): 1458-66, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23865896

ABSTRACT

DNA evidence can pose interpretation challenges, particularly with low-level or mixed samples. It would be desirable to make full use of the quantitative data, consider every genotype possibility, and objectively produce accurate and reproducible DNA match results. Probabilistic genotype computing is designed to achieve these goals. This validation study assessed TrueAllele(®) probabilistic computer interpretation on 368 evidence items in 41 test cases and compared the results with human review of the same data. Whenever there was a human result, the computer's genotype was concordant. Further, the computer produced a match statistic on 81 mixture items (for 87 inferred matching genotypes) in the test cases, while human review reported a statistic on 25 of these items (30.9%). Using match statistics to quantify information, probabilistic genotyping was shown to be sensitive, specific, and reproducible. These results demonstrate that objective probabilistic genotyping of biological evidence can reliably preserve DNA identification information.


Subject(s)
Computer Simulation , DNA Fingerprinting , Genotype , Likelihood Functions , Humans , Microsatellite Repeats , Probability , Reproducibility of Results , Sensitivity and Specificity
7.
Sci Justice ; 53(2): 103-14, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23601717

ABSTRACT

Two person DNA admixtures are frequently encountered in criminal cases and their interpretation can be challenging, particularly if the amount of DNA contributed by both individuals is approximately equal. Due to an inevitable degree of uncertainty in the constituent genotypes, reduced statistical weight is given to the mixture evidence compared to that expected from the constituent single source contributors. The ultimate goal of mixture analysis, then, is to precisely discern the constituent genotypes and here we posit a novel strategy to accomplish this. We hypothesised that LCM-mediated isolation of multiple groups of cells ('binomial sampling') from the admixture would create separate cell sub-populations with differing constituent weight ratios. Furthermore we predicted that interpreting the resulting DNA profiling data by the quantitative computer-based TrueAllele® interpretation system would result in an efficient recovery of the constituent genotypes due to newfound abilities to compute a maximum LR from sub-samples with skewed weight ratios, and to jointly interpret all possible pairings of sub-samples using a joint likelihood function. As a proof of concept, 10 separate cell samplings of size 20 recovered by LCM from each of two 1:1 buccal cell mixtures were DNA-STR profiled using a specifically developed LCN methodology, with the data analyzed by the TrueAllele® Casework system. In accordance with the binomial sampling hypothesis, the sub-samples exhibited weight ratios that were well dispersed from the 50% center value (50±35% at the 95% level). The maximum log(LR) information for a genotype inferred from a single 20 cell sample was 18.5 ban, with an average log(LR) information of 11.7 ban. Co-inferring genotypes using a joint likelihood function with two sub-samples essentially recovered the full genotype information. We demonstrate that a similar gain in genotype information can be obtained with standard (28-cycle) PCR conditions using the same joint interpretation methods. Finally, we discuss the implications of this work for routine forensic practice.


Subject(s)
DNA Fingerprinting/methods , Lasers , Likelihood Functions , Coculture Techniques , Genotype , Humans , Microsatellite Repeats , Polymerase Chain Reaction , Software
8.
J Forensic Sci ; 56(6): 1430-47, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21827458

ABSTRACT

DNA mixtures with two or more contributors are a prevalent form of biological evidence. Mixture interpretation is complicated by the possibility of different genotype combinations that can explain the short tandem repeat (STR) data. Current human review simplifies this interpretation by applying thresholds to qualitatively treat STR data peaks as all-or-none events and assigning allele pairs equal likelihood. Computer review, however, can work instead with all the quantitative data to preserve more identification information. The present study examined the extent to which quantitative computer interpretation could elicit more identification information than human review from the same adjudicated two-person mixture data. The base 10 logarithm of a DNA match statistic is a standard information measure that permits such a comparison. On eight mixtures having two unknown contributors, we found that quantitative computer interpretation gave an average information increase of 6.24 log units (min = 2.32, max = 10.49) over qualitative human review. On eight other mixtures with a known victim reference and one unknown contributor, quantitative interpretation averaged a 4.67 log factor increase (min = 1.00, max = 11.31) over qualitative review. This study provides a general treatment of DNA interpretation methods (including mixtures) that encompasses both quantitative and qualitative review. Validation methods are introduced that can assess the efficacy and reproducibility of any DNA interpretation method. An in-depth case example highlights 10 reasons (at 10 different loci) why quantitative probability modeling preserves more identification information than qualitative threshold methods. The results validate TrueAllele(®) DNA mixture interpretation and establish a significant information improvement over human review.


Subject(s)
DNA Fingerprinting , DNA/genetics , Software , Alleles , Bayes Theorem , Genotype , Humans , Likelihood Functions , Microsatellite Repeats
9.
PLoS One ; 4(12): e8327, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-20020039

ABSTRACT

Forensic DNA evidence often contains mixtures of multiple contributors, or is present in low template amounts. The resulting data signals may appear to be relatively uninformative when interpreted using qualitative inclusion-based methods. However, these same data can yield greater identification information when interpreted by computer using quantitative data-modeling methods. This study applies both qualitative and quantitative interpretation methods to a well-characterized DNA mixture and dilution data set, and compares the inferred match information. The results show that qualitative interpretation loses identification power at low culprit DNA quantities (below 100 pg), but that quantitative methods produce useful information down into the 10 pg range. Thus there is a ten-fold information gap that separates the qualitative and quantitative DNA mixture interpretation approaches. With low quantities of culprit DNA (10 pg to 100 pg), computer-based quantitative interpretation provides greater match sensitivity.


Subject(s)
Base Sequence , Forensic Genetics/methods , Forensic Genetics/standards , Genotype , Humans , Microsatellite Repeats/genetics , Regression Analysis , Sequence Homology, Nucleic Acid
10.
Hum Mutat ; 19(4): 361-73, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11933190

ABSTRACT

High-throughput assays are essential for the practical application of mutation detection in medicine and research. Moreover, such assays should produce informative data of high quality that have a low-error rate and a low cost. Unfortunately, this is not currently the case. Instead, we typically witness legions of people reviewing imperfect data at astronomical expense yielding uncertain results. To address this problem, for the past decade we have been developing methods that exploit the inherent quantitative nature of DNA experiments. By generating high-quality data, careful DNA-signal quantification permits robust analysis for determining true alleles and certainty measures. We will explore several assays and methods. In a one-dimensional readout, short tandem repeat (STR) data display interesting artifacts. Even with high-quality data, PCR artifacts such as stutter and relative amplification can confound correct or automated scoring. However, by appropriate mathematical analysis, these artifacts can be essentially removed from the data. The result is fully automated data scoring, quality assessment, and new types of DNA analysis. These approaches enable the accurate analysis of pooled DNA samples, for both genetic and forensic applications. On a two-dimensional surface (comprised of zero-dimensional spots) one can perform assays of extremely high-throughput at low cost. The question is how to determine DNA sequence length or content from nonelectrophoretic intensity data. Here again, mathematical analysis of highly quantitative data provides a solution. We will discuss new lab assays that can produce data containing such information; mathematical transformation then determines DNA length or content.


Subject(s)
DNA/analysis , DNA/genetics , Genomics/methods , Genomics/standards , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , Artifacts , Automation/methods , Automation/standards , Fourier Analysis , Genetic Testing/instrumentation , Genetic Testing/methods , Genetic Testing/standards , Genomics/instrumentation , Genotype , Polymerase Chain Reaction/standards , Sensitivity and Specificity , Sequence Analysis, DNA/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...