Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 01 29.
Article in English | MEDLINE | ID: mdl-33513091

ABSTRACT

Mutations in the fukutin-related protein (FKRP) cause Walker-Warburg syndrome (WWS), a severe form of congenital muscular dystrophy. Here, we established a WWS human induced pluripotent stem cell-derived myogenic model that recapitulates hallmarks of WWS pathology. We used this model to investigate the therapeutic effect of metabolites of the pentose phosphate pathway in human WWS. We show that functional recovery of WWS myotubes is promoted not only by ribitol but also by its precursor ribose. Moreover, we found that the combination of each of these metabolites with NAD+ results in a synergistic effect, as demonstrated by rescue of α-dystroglycan glycosylation and laminin binding capacity. Mechanistically, we found that FKRP residual enzymatic capacity, characteristic of many recessive FKRP mutations, is required for rescue as supported by functional and structural mutational analyses. These findings provide the rationale for testing ribose/ribitol in combination with NAD+ to treat WWS and other diseases associated with FKRP mutations.


Healthy muscles are complex machines that require a myriad of finely tuned molecules to work properly. For instance, a protein called alpha-DG sits at the surface of healthy muscle cells, where it strengthens the tissue by latching onto other proteins in the environment. To perform its role correctly, it first needs to be coated with sugar molecules, a complex process which requires over 20 proteins, including the enzyme FKRP. Faulty forms of FKRP reduce the number of sugars added to alpha-DG, causing the muscle tissue to weaken and waste away, potentially leading to severe forms of diseases known as muscular dystrophies. Drugs that can restore alpha-DG sugar molecules could help to treat these conditions. Previous studies on mice and fish have highlighted two potential candidates, known as ribitol and NAD+, which can help to compensate for reduced FKRP activity and allow sugars to be added to alpha-DG again. Yet no model is available to test these molecules on actual human muscle cells. Here, Ortiz-Cordero et al. developed such a model in the laboratory by growing muscle cells from naïve, undifferentiated cells generated from skin given by a muscular dystrophy patient with a faulty form of FKRP. The resulting muscle fibers are in essence identical to the ones present in the individual. As such, they can help to understand the effect various drugs have on muscular dystrophies. The cells were then put in contact with either NAD+, ribitol, or a precursor of ribitol known as ribose. Ortiz-Cordero et al. found that ribitol and ribose restored the ability of FKRP to add sugars to alpha-DG, reducing muscle damage. Combining NAD+ with ribitol or ribose had an even a bigger impact, further increasing the number of sugars on alpha-DG. The human muscle cell model developed by Ortiz-Cordero et al. could help to identify new compounds that can treat muscular conditions. In particular, the findings point towards NAD+, ribose and ribitol as candidates for treating FKRP-related muscular dystrophies. Further safety studies are now needed to evaluate whether these compounds could be used in patients.


Subject(s)
Dystroglycans/metabolism , Muscle Fibers, Skeletal/metabolism , NAD/pharmacology , Ribitol/metabolism , Ribose/metabolism , Cell Line , Glycosylation , Humans , Mutation , Pentosyltransferases/genetics
2.
Elife ; 82019 11 11.
Article in English | MEDLINE | ID: mdl-31710288

ABSTRACT

Targeted differentiation of pluripotent stem (PS) cells into myotubes enables in vitro disease modeling of skeletal muscle diseases. Although various protocols achieve myogenic differentiation in vitro, resulting myotubes typically display an embryonic identity. This is a major hurdle for accurately recapitulating disease phenotypes in vitro, as disease commonly manifests at later stages of development. To address this problem, we identified four factors from a small molecule screen whose combinatorial treatment resulted in myotubes with enhanced maturation, as shown by the expression profile of myosin heavy chain isoforms, as well as the upregulation of genes related with muscle contractile function. These molecular changes were confirmed by global chromatin accessibility and transcriptome studies. Importantly, we also observed this maturation in three-dimensional muscle constructs, which displayed improved in vitro contractile force generation in response to electrical stimulus. Thus, we established a model for in vitro muscle maturation from PS cells.


Subject(s)
Cell Differentiation/drug effects , Intercellular Signaling Peptides and Proteins/isolation & purification , Muscle Fibers, Skeletal/metabolism , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/physiology , Cells, Cultured , Drug Evaluation, Preclinical , Humans , Intercellular Signaling Peptides and Proteins/pharmacology
3.
Skelet Muscle ; 5: 36, 2015.
Article in English | MEDLINE | ID: mdl-26504514

ABSTRACT

BACKGROUND: Satellite cells (SCs) are indispensable for muscle regeneration and repair; however, due to low frequency in primary muscle and loss of engraftment potential after ex vivo expansion, their use in cell therapy is currently unfeasible. To date, an alternative to this limitation has been the transplantation of SC-derived myogenic progenitor cells (MPCs), although these do not hold the same attractive properties of stem cells, such as self-renewal and long-term regenerative potential. METHODS: We develop a method to expand wild-type and dystrophic fresh isolated satellite cells using transient expression of Pax3. This approach can be combined with genetic correction of dystrophic satellite cells and utilized to promote muscle regeneration when transplanted into dystrophic mice. RESULTS: Here, we show that SCs from wild-type and dystrophic mice can be expanded in culture through transient expression of Pax3, and these expanded activated SCs can regenerate the muscle. We test this approach in a gene therapy model by correcting dystrophic SCs from a mouse lacking dystrophin using a Sleeping Beauty transposon carrying the human µDYSTROPHIN gene. Transplantation of these expanded corrected cells into immune-deficient, dystrophin-deficient mice generated large numbers of dystrophin-expressing myofibers and improved contractile strength. Importantly, in vitro expanded SCs engrafted the SC compartment and could regenerate muscle after secondary injury. CONCLUSION: These results demonstrate that Pax3 is able to promote the ex vivo expansion of SCs while maintaining their stem cell regenerative properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...