Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 45(18): 5089-5092, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932460

ABSTRACT

A real-time jitter meter is used to measure and digitally sample the pulse-to-pulse timing error in a laser pulse train. The jitter meter is self-referenced using a single-pulse delay line interferometer and measures timing jitter using optical heterodyne detection between two frequency channels of the pulse train. Jitter sensitivity down to 3×10-10fs2/Hz at 500 MHz has been demonstrated with a pulse-to-pulse noise floor of 1.6 fs. As a proof of principle, the digital correction of the output of a high-frequency photonic analog-to-digital converter (PADC) is demonstrated with an emulated jitter signal. Up to 23 dB of jitter correction, down to the noise floor of the PADC, is accomplished with radio-frequency modulation up to 40 GHz.

2.
IEEE Trans Med Imaging ; 35(9): 2005-14, 2016 09.
Article in English | MEDLINE | ID: mdl-27008663

ABSTRACT

Dynamic (4D) CT imaging is used in a variety of applications, but the two major drawbacks of the technique are its increased radiation dose and longer reconstruction time. Here we present a statistical analysis of our previously proposed Mixed Confidence Estimation (MCE) method that addresses both these issues. This method, where framed iterative reconstruction is only performed on the dynamic regions of each frame while static regions are fixed across frames to a composite image, was proposed to reduce computation time. In this work, we generalize the previous method to describe any application where a portion of the image is known with higher confidence (static, composite, lower-frequency content, etc.) and a portion of the image is known with lower confidence (dynamic, targeted, etc). We show that by splitting the image space into higher and lower confidence components, MCE can lower the estimator variance in both regions compared to conventional reconstruction. We present a theoretical argument for this reduction in estimator variance and verify this argument with proof-of-principle simulations. We also propose a fast approximation of the variance of images reconstructed with MCE and confirm that this approximation is accurate compared to analytic calculations of and multi-realization image variance. This MCE method requires less computation time and provides reduced image variance for imaging scenarios where portions of the image are known with more certainty than others allowing for potentially reduced radiation dose and/or improved dynamic imaging.


Subject(s)
Tomography, X-Ray Computed , Algorithms , Four-Dimensional Computed Tomography , Humans , Image Processing, Computer-Assisted , Radiation Dosage
3.
Article in English | MEDLINE | ID: mdl-25635266

ABSTRACT

We present a statistical analysis of our previously proposed Constrain-Static Target-Kinetic algorithm for 4D CT reconstruction. This method, where framed iterative reconstruction is only performed on the dynamic regions of each frame, while static regions are fixed across frames to a composite image, was proposed to reduce computation time. In this work, we generalize the previous method to describe any application where a portion of the image is known with higher confidence (static, composite, lower-frequency content, etc.) and a portion of the image is known with lower confidence (dynamic, targeted, etc). We show that by splitting the image space into higher and lower confidence components, CSTK can lower the estimator variance in both regions compared to conventional reconstruction. We present a theoretical argument for this reduction in estimator variance and verify this argument with proof-of-principle simulations. This method allows for reduced computation time and improved image quality for imaging scenarios where portions of the image are known with more certainty than others.

4.
Biophys J ; 99(9): 2793-802, 2010 Nov 03.
Article in English | MEDLINE | ID: mdl-21044576

ABSTRACT

We report an in vitro study comparing the growth of long actin tails induced by spherical beads coated with the verprolin central acidic domain of the polymerization enzyme N-WASP to that induced by Listeria monocytogenes in similar cellular extracts. The tracks behind the beads show characteristic differences in shape and curvature from those left by the bacteria, which have an elongated shape and a similar polymerization-inducing enzyme distributed only on the rear surface of the cell. The experimental tracks are simulated using a generalized kinematic model, which incorporates three modes of bead rotation with respect to the tail. The results show that the trajectories of spherical beads are mechanically deterministic rather than random, as suggested by stochastic models. Assessment of the bead rotation and its mechanistic basis offers insights into the biological function of actin-based motility.


Subject(s)
Actins/physiology , Animals , Biomechanical Phenomena , Biophysical Phenomena , In Vitro Techniques , Listeria monocytogenes/physiology , Microscopy, Confocal , Microscopy, Phase-Contrast , Microscopy, Video , Models, Biological , Movement/physiology , Particle Size , Polystyrenes , Rabbits , Wiskott-Aldrich Syndrome Protein, Neuronal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...