Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Magn Reson ; 233: 74-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23757362

ABSTRACT

We report the optimization of a slim-line logging NMR tool carried out by maximizing the signal-to-noise ratio of the NMR measurements. The tool, based on cylindrical permanent magnets of 20 cm length and 5 cm diameter, has a penetration depth of about 2 cm measured from its surface. This is obtained thanks to a large radio frequency coil whose dimensions are comparable to the sensor size. An analytical expression of the SNR as a function of parameters which take into account the interaction between the radio frequency coil and the magnet shielding is developed. In view of the external constrains such as the one imposed by the excavation hole, a proper tool size is determined in the optimization process. Due to its size and properties, the sensor is suitable to measure water content in the vadose zone, which is the zone comprised within the first meters of the Earth surface and whose study is important for improving water management in agriculture and for refining climate models.

2.
J Magn Reson ; 215: 74-84, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22244451

ABSTRACT

This paper describes a shimming approach useful to reduce the gradient strength of the magnetic field generated by single-sided sensors simultaneously maximizing its uniformity along the lateral directions of the magnet. In this way, the thickness of the excited sensitive volume can be increased without compromising the depth resolution of the sensor. By implementing this method on a standard U-shaped magnet, the gradient strength was reduced one order of magnitude. In the presence of a gradient of about 2 T/m, slices of 2mm could be profiled with a resolution that ranges from 25 µm at the center of the slice to 50 µm at the borders. This sensor is of particular advantage for applications, where the scanning range is of the order of the excited slice. In those cases, the full profile is measured in a single excitation experiment, eliminating the need for repositioning the excited slice across the depth range to complete the profile as occurs with standard high gradient sensors. Besides simplifying the experimental setup, the possibility to move from a point-by-point measurement to the simultaneous acquisition of the full profile led to the shortening of the experimental time. A further advantage of performing the experiment under a smaller static gradient is a reduction of the diffusion attenuation affecting the signal decay measured with a CPMG sequence, making it possible to measure the T(2) of samples with high diffusivity (comparable to the water diffusivity). The performance of the sensor in terms of resolution and sensitivity is first evaluated and compared with conventional singled-sided sensors of higher gradient strength using phantoms of known geometry and relaxation times. Then, the device is used to profile the structure of human skin in vivo. To understand the contrast between the different skin layers, the distribution of relaxation times T(2) and diffusion coefficients is spatially resolved along the depth direction.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Spectroscopy/instrumentation , Skin/anatomy & histology , Skin/chemistry , Adipose Tissue/anatomy & histology , Adipose Tissue/chemistry , Algorithms , Dermis/anatomy & histology , Dermis/chemistry , Diffusion , Electric Impedance , Electromagnetic Fields , Epidermis/anatomy & histology , Epidermis/chemistry , Equipment Design , Hand , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Magnets , Phantoms, Imaging , Signal-To-Noise Ratio , Spectroscopy, Fourier Transform Infrared
3.
J Magn Reson ; 207(1): 53-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20832342

ABSTRACT

This work evaluates the performance of edge-detection algorithms to determine the sample geometry with high spatial accuracy from low-resolution MR images. In particular, we show that by applying such numerical methods it is possible to reconstruct the internal and external contours of the object with a spatial precision that surpasses the nominal spatial resolution of the image by more than one order of magnitude. Special attention is paid to find the spatial resolution and signal-to-noise ratio required by the described numerical methodology to achieve a desired spatial accuracy. Finally, we discuss the potential application of this image processing approach for in-line quality control of extruded rubber materials, where micrometer spatial precision has to be achieved from images measured in short experimental times. The results presented here prove that the sensitivity of mobile MRI sensors is enough to achieve the spatial accuracy required to proof check the production of extruded rubber fittings in acceptable experimental times.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Algorithms , Automobiles , Industry , Quality Control , Rubber
5.
Acc Chem Res ; 43(6): 761-70, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20345119

ABSTRACT

Nuclear magnetic resonance (NMR) has many applications in science, medicine, and technology. Conventional instrumentation is large and expensive, however, because superconducting magnets offer maximum sensitivity. Yet NMR devices can also be small and inexpensive if permanent magnets are used, and samples need not be placed within the magnet but can be examined externally in the stray magnetic field. Mobile stray-field NMR is a method of growing interest for nondestructive testing of a diverse range of materials and processes. A well-known stray-field sensor is the commercially available NMR-MOUSE, which is small and can readily be carried to an object to be studied. In this Account, we describe mobile stray-field NMR, with particular attention to its use in analyzing objects of cultural heritage. The most common data recorded are relaxation measurements of (1)H because the proton is the most sensitive NMR nucleus, and relaxation can be measured despite the inhomogeneous magnetic field that typically accompanies a simple magnet design. Through NMR relaxation, the state of matter can be analyzed locally, and the signal amplitude gives the proton density. A variety of stray-field sensors have been designed. Small devices weighing less than a kilogram have a shallow penetration depth of just a few millimeters and a resolution of a few micrometers. Access to greater depths requires larger sensors that may weigh 30 kg or more. The use of these sensors is illustrated by selected examples, including examinations of (i) the stratigraphy of master paintings, (ii) binder aging, (iii) the deterioration of paper, (iv) wood density in master violins, (v) the moisture content and moisture profiles in walls covered with paintings and mosaics, and (vi) the evolution of stone conservation treatments. The NMR data provide unique information to the conservator on the state of the object--including past conservation measures. The use of mobile NMR remains relatively new, expanding from field testing of materials such as roads, bridge decks, soil, and the contents of drilled wells to these more recent studies of objects of cultural heritage. As a young field, noninvasive testing of artworks with stray-field NMR thus offers many opportunities for research innovation and further development.

6.
J Magn Reson ; 198(1): 80-7, 2009 May.
Article in English | MEDLINE | ID: mdl-19217330

ABSTRACT

In this work we describe the construction of a mobile NMR tomograph with a highly homogeneous magnetic field. Fast MRI techniques as well as NMR spectroscopy measurements were carried out. The magnet is based on a Halbach array built from identical permanent magnet blocks generating a magnetic field of 0.22T. To shim the field inhomogeneities inherent to magnet arrays constructed from these materials, a shim strategy based on the use of movable magnet blocks is employed. With this approach a reduction of the line-width from approximately 20kHz to less than 0.1kHz was achieved, that is by more than two orders of magnitude, in a volume of 21cm(3). Implementing a RARE sequence, 3D images of different objects placed in this volume were obtained in short experimental times. Moreover, by reducing the sample size to 1cm(3), sub ppm resolution is obtained in (1)H NMR spectra.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Spectroscopy/instrumentation , Algorithms , Citrus/anatomy & histology , Construction Materials , Data Interpretation, Statistical , Magnetic Resonance Imaging/statistics & numerical data , Magnetic Resonance Spectroscopy/statistics & numerical data , Musa/anatomy & histology , Phantoms, Imaging
7.
Science ; 315(5815): 1110-2, 2007 Feb 23.
Article in English | MEDLINE | ID: mdl-17218492

ABSTRACT

Portable single-sided nuclear magnetic resonance (NMR) magnets used for nondestructive studies of large samples are believed to generate inherently inhomogeneous magnetic fields. We demonstrated experimentally that the field of an open magnet can be shimmed to high homogeneity in a large volume external to the sensor. This technique allowed us to measure localized high-resolution proton spectra outside a portable open magnet with a spectral resolution of 0.25 part per million. The generation of these experimental conditions also simplifies the implementation of such powerful methodologies as multidimensional NMR spectroscopy and imaging.

8.
Lab Chip ; 6(1): 90-5, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16372074

ABSTRACT

The velocity distribution of liquid flowing in a commercial micromixer has been determined directly by using pulsed-field gradient NMR. Velocity maps with a spatial resolution of 29 microm x 43 microm were obtained by combining standard imaging gradient units with a homebuilt rectangular surface coil matching the mixer geometry. The technique provides access to mixers and reactors of arbitrary shape regardless of optical transparency. Local heterogeneities in the signal intensity and the velocity pattern were found and serve to investigate the quality and functionality of a micromixer, revealing clogging and inhomogeneous flow distributions.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Feasibility Studies , Microscopy/instrumentation , Motion , Solutions/chemistry
9.
Phys Rev Lett ; 94(19): 197602, 2005 May 20.
Article in English | MEDLINE | ID: mdl-16090211

ABSTRACT

Conventional high resolution nuclear magnetic resonance (NMR) spectra are usually measured in homogeneous, high magnetic fields (>1 T), which are produced by expensive and immobile superconducting magnets. We show that chemically resolved xenon (Xe) NMR spectroscopy of liquid samples can be measured in the Earth's magnetic field (5 x 10(-5) T) with a continuous flow of hyperpolarized Xe gas. It was found that the measured normalized Xe frequency shifts are significantly modified by the Xe polarization density, which causes different dipolar magnetic fields in the liquid and in the gas phases.

10.
Science ; 308(5726): 1279, 2005 May 27.
Article in English | MEDLINE | ID: mdl-15817815

ABSTRACT

We report construction of a portable nuclear magnetic resonance sensor with a single-sided open probe design. The resulting magnetic field inhomogeneity is compensated by a pulse sequence that takes advantage of parallel inhomogeneity in the applied radio frequency field. We can thereby acquire fluorine-19 spectra of liquid fluorocarbons with 8 parts per million resolution, surmounting the long-standing obstacle of obtaining chemical shift information with open probe instruments.

11.
Magn Reson Imaging ; 23(2): 197-201, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15833612

ABSTRACT

Unilateral mobile NMR employs portable instrumentation with sensors, which are applied to the object from one side. Based on the principles of well-logging NMR, a hand-held sensor, the NMR-MOUSE (MObile Universal Surface Explorer) has been developed for nondestructive materials testing. In the following, a number of new applications of unilateral NMR in materials science are reviewed. They are the state assessment of polyethylene pipes, the characterization of wood, the in situ evaluation of stone conservation treatment, high-resolution profiling of rubber tubes and 2-D imaging for defect analysis in rubber products.


Subject(s)
Magnetic Resonance Spectroscopy , Materials Testing , Construction Materials , Magnetic Resonance Spectroscopy/instrumentation , Rubber , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...