Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 20(15): 4328-32, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20609585

ABSTRACT

Biaryl ethers were recently reported as potent NNRTIs. Herein, we disclose a detailed effort to modify the previously reported compound 1. We have designed and synthesized a series of novel pyrazole derivatives as a surrogate for pyrazolopyridine motif that were potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells.


Subject(s)
Anti-HIV Agents/chemistry , Ethers/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , Pyrazoles/chemistry , Pyridines/chemistry , Reverse Transcriptase Inhibitors/chemistry , Allosteric Regulation , Animals , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacokinetics , Dogs , Ethers/chemical synthesis , Ethers/pharmacokinetics , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Humans , Mutation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacokinetics , Structure-Activity Relationship
2.
J Med Chem ; 52(22): 7163-9, 2009 Nov 26.
Article in English | MEDLINE | ID: mdl-19883100

ABSTRACT

Biaryl ethers were recently reported as potent NNRTIs. Herein we disclose a detailed SAR study that led to the biaryl ether 6. This compound possessed excellent potency against WT RT and key clinically observed RT mutants and had an excellent pharmacokinetic profile in rats, dogs, and rhesus macaques. The compound also exhibited a clean safety profile in preclinical safety studies.


Subject(s)
Ethers/chemistry , Ethers/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/genetics , HIV-1/drug effects , HIV-1/genetics , Mutation , Animals , Cell Line , Dogs , Ethers/chemical synthesis , Ethers/pharmacokinetics , HIV-1/enzymology , Humans , Macaca mulatta , Nucleosides/chemistry , Rats , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 19(17): 5119-23, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19631528

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are key elements of multidrug regimens, called HAART (Highly Active Antiretroviral Therapy), that are used to treat HIV-1 infections. Elucidation of the structure-activity relationships of the thiocarbamate moiety of the previous published lead compound 2 provided a series of novel tetrahydroquinoline derivatives as potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells. The SAR optimization, mutation profiles, preparation of compounds, and pharmacokinetic profile of compounds are described.


Subject(s)
Anti-HIV Agents/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , Quinolines/chemistry , Reverse Transcriptase Inhibitors/chemistry , Allosteric Site , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Binding Sites , Crystallography, X-Ray , HIV Reverse Transcriptase/metabolism , Molecular Conformation , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/metabolism , Quinolines/chemical synthesis , Quinolines/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship , Thiocarbamates/chemistry , Thiocarbamates/pharmacology
4.
J Med Chem ; 51(20): 6503-11, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18826204

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been shown to be a key component of highly active antiretroviral therapy (HAART). The use of NNRTIs has become part of standard combination antiviral therapies producing clinical outcomes with efficacy comparable to other antiviral regimens. There is, however, a critical issue with the emergence of clinical resistance, and a need has arisen for novel NNRTIs with a broad spectrum of activity against key HIV-1 RT mutations. Using a combination of traditional medicinal chemistry/SAR analyses, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad spectrum antiviral activity and good pharmacokinetic profiles. Further refinement of key compounds in this series to optimize physical properties and pharmacokinetics has resulted in the identification of 8e (MK-4965), which has high levels of potency against wild-type and key mutant viruses, excellent oral bioavailability and overall pharmacokinetics, and a clean ancillary profile.


Subject(s)
HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , HIV-1/enzymology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Administration, Oral , Animals , Bromine Compounds/chemical synthesis , Bromine Compounds/chemistry , Crystallography, X-Ray , Drug Evaluation, Preclinical , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , Models, Molecular , Molecular Structure , Mutation/genetics , Nucleosides/chemistry , Nucleosides/pharmacology , Pyrazoles/chemistry , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Inhibitors/chemistry , Structure-Activity Relationship
6.
J Biol Chem ; 282(2): 1397-408, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17090533

ABSTRACT

The Y-family DNA polymerase Dpo4, from the thermophilic crenarchaeon Sulfolobus solfataricus P2, offers a valuable opportunity to investigate the effect of conformational flexibility on the bypass of bulky lesions because of its ability to function efficiently at a wide range of temperatures. Combined molecular modeling and experimental kinetic studies have been carried out for 10S-(+)-trans-anti-[BP]-N2-dG ((+)-ta-[BP]G), a lesion derived from the covalent reaction of a benzo[a]pyrene metabolite with guanine in DNA, at 55 degrees C and results compared with an earlier study at 37 degrees C (Perlow-Poehnelt, R. A., Likhterov, I., Scicchitano, D. A., Geacintov, N. E., and Broyde, S. (2004) J. Biol. Chem. 279, 36951-36961). The experimental results show that there is more overall nucleotide insertion opposite (+)-ta-[BP]G due to particularly enhanced mismatch incorporation at 55 degrees C compared with 37 degrees C. The molecular dynamics simulations suggest that mismatched nucleotide insertion opposite (+)-ta-[BP]G is increased at 55 degrees C compared with 37 degrees C because the higher temperature shifts the preference of the damaged base from the anti to the syn conformation, with the carcinogen on the more open major groove side. The mismatched dNTP structures are less distorted when the damaged base is syn than when it is anti, at the higher temperature. However, with the normal partner dCTP, the anti conformation with close to Watson-Crick alignment remains more favorable. The molecular dynamics simulations are consistent with the kcat values for nucleotide incorporation opposite the lesion studied, providing structural interpretation of the experimental observations. The observed temperature effect suggests that conformational flexibility plays a role in nucleotide incorporation and bypass fidelity opposite (+)-ta-[BP]G by Dpo4.


Subject(s)
Benzo(a)pyrene/chemistry , Carcinogens/chemistry , DNA Adducts/chemistry , DNA Polymerase beta/chemistry , Hot Temperature , Sulfolobus solfataricus/enzymology , Sulfolobus solfataricus/genetics , Base Pair Mismatch , Guanine/chemistry , Kinetics , Models, Molecular , Nucleotides/genetics , Protein Conformation
7.
Biochemistry ; 43(51): 16092-105, 2004 Dec 28.
Article in English | MEDLINE | ID: mdl-15610004

ABSTRACT

Reactive oxygen species are byproducts of normal aerobic respiration and ionizing radiation, and they readily react with DNA to form a number of base lesions, including the mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), 4,6-diamino-5-formamidopyrimidine (FapyA), and 8-oxo-7,8-dihydroadenine (8-oxoA). Such oxidative lesions are removed by the base excision repair pathway, which is initiated by DNA glycosylases such as the formamidopyrimidine-DNA glycosylase (Fpg) in Escherichia coli. The 8-oxoG, FapyG, and FapyA lesions are bound and excised by Fpg, while structurally similar 8-oxoA is excised by Fpg very poorly. We carried out molecular modeling and molecular dynamics simulations to interpret substrate discrimination within the active site of E. coli Fpg. Lys-217 and Met-73 were identified as residues playing important roles in the recognition of the oxidized imidazole ring in the substrate bases, and the Watson-Crick edge of the damaged base plays a role in optimally positioning the base within the active site. The recognition and excision of FapyA likely result from the opened imidazole ring, while 8-oxoA's lack of flexibility and closed imidazole ring may contribute to Fpg's inability to excise this base. Different interactions between each base and the enzyme specificity pocket account for differential treatment of the various lesions by this enzyme, and thus elucidate the structure-function relationship involved in an initial step of base excision repair.


Subject(s)
Adenine/analogs & derivatives , Catalytic Domain/physiology , DNA-Formamidopyrimidine Glycosylase/metabolism , Adenine/metabolism , Computer Simulation , DNA/metabolism , Guanine/metabolism , Models, Molecular , Protein Structure, Tertiary , Substrate Specificity
8.
J Biol Chem ; 279(35): 36951-61, 2004 Aug 27.
Article in English | MEDLINE | ID: mdl-15210693

ABSTRACT

Y-family DNA polymerases lack some of the mechanisms that replicative DNA polymerases employ to ensure fidelity, resulting in higher error rates during replication of undamaged DNA templates and the ability to bypass certain aberrant bases, such as those produced by exposure to carcinogens, including benzo[a]pyrene (BP). A tumorigenic metabolite of BP, (+)-anti-benzo-[a]pyrene diol epoxide, attacks DNA to form the major 10S (+)-trans-anti-[BP]-N(2)-dG adduct, which has been shown to be mutagenic in a number of prokaryotic and eukaryotic systems. The 10S (+)-trans-anti-[BP]-N(2)-dG adduct can cause all three base substitution mutations, and the SOS response in Escherichia coli increases bypass of bulky adducts, suggesting that Y-family DNA polymerases are involved in the bypass of such lesions. Dpo4 belongs to the DinB branch of the Y-family, which also includes E. coli pol IV and eukaryotic pol kappa. We carried out primer extension assays in conjunction with molecular modeling and molecular dynamics studies in order to elucidate the structure-function relationship involved in nucleotide incorporation opposite the bulky 10S (+)-trans-anti-[BP]-N(2)-dG adduct by Dpo4. Dpo4 is able to bypass the 10S (+)-trans-anti-[BP]-N(2)-dG adduct, albeit to a lesser extent than unmodified guanine, and the V(max) values for insertion of all four nucleotides opposite the adduct by Dpo4 are similar. Computational studies suggest that 10S (+)-trans-anti-[BP]-N(2)-dG can be accommodated in the active site of Dpo4 in either the anti or syn conformation due to the limited protein-DNA contacts and the open nature of both the minor and major groove sides of the nascent base pair, which can contribute to the promiscuous nucleotide incorporation opposite this lesion.


Subject(s)
Carcinogens , DNA Adducts , DNA-Directed DNA Polymerase/chemistry , Base Pairing , Benzo(a)pyrene , Binding Sites , DNA/chemistry , DNA Primers/chemistry , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Kinetics , Models, Chemical , Models, Molecular , Nucleic Acid Conformation , Nucleotides/chemistry , Oligonucleotides/chemistry , Protein Binding , Protein Conformation , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...