Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Neurol ; 13: 1036068, 2022.
Article in English | MEDLINE | ID: mdl-36438968

ABSTRACT

Background: While treatment with levodopa remains the cornerstone of Parkinson's disease (PD) management, chronic oral therapy is often associated with the development of motor complications, that correlate to fluctuating levodopa plasma concentrations, limiting its clinical utility. Continuous infusion is considered to be the optimal delivery route for treating PD patients with motor fluctuations, but current infusion systems require invasive surgery. Subcutaneous infusion of (SC) levodopa has the potential to provide a better tolerated and more convenient route of continuous levodopa delivery. ND0612 is in development as a combination product providing continuous levodopa/carbidopa via a minimally invasive, subcutaneous delivery system for PD patients experiencing motor response fluctuations. We present pharmacokinetic results from a series of studies that analyzed plasma concentrations after SC levodopa delivery with ND0612 to inform the clinical development program. Methods: We performed a series of six Phase I and II studies to characterize the pharmacokinetics of levodopa and carbidopa derived from ND0612 infusion with/without adjunct oral therapy of the same ingredients. These studies were conducted in healthy volunteers and in PD patients experiencing motor response fluctuations while on their current levodopa therapy regimen. Results: Taken together, the results demonstrate dose-proportionality dependent on rate of subcutaneous levodopa infusion leading to stable and sustained plasma concentrations of levodopa. Subcutaneous infusion of ND0612 administered with oral levodopa/carbidopa maintained near-constant, therapeutic levodopa plasma concentrations, thereby avoiding the troughs in levodopa plasma concentrations that are associated with OFF time in PD. The data generated in this series of studies also confirmed that a levodopa/carbidopa dose ratio of 8:1 would be the most reasonable choice for ND0612 development. Conclusions: This series of clinical pharmacokinetic studies have demonstrated that ND0612, administered continuously with a levodopa concentration of 60 mg/ml combined with carbidopa 7.5 mg/ml, and complemented with oral levodopa/carbidopa, is suitable for 24 h continuous administration in patients with PD. The stable plasma concentrations of levodopa achieved predict utility of ND0612 as a parenteral formulation for achieving clinically useful delivery of levodopa for PD patients.

2.
Clin Pharmacol Drug Dev ; 11(7): 865-877, 2022 07.
Article in English | MEDLINE | ID: mdl-35245409

ABSTRACT

TV-46000 is a long-acting subcutaneous antipsychotic that uses a novel copolymer drug delivery technology in combination with a well-characterized molecule, risperidone, that is in clinical development as a treatment for schizophrenia. A population pharmacokinetic (PPK) modeling and simulation approach was implemented to identify TV-46000 doses and dosing schedules for clinical development that would provide the best balance between clinical efficacy and safety. The PPK model was created by applying pharmacokinetic data from a phase 1 study of 97 patients with a diagnosis of schizophrenia or schizoaffective disorder who received either single or repeated doses of TV-46000. The PPK model was used to characterize the complex release profile of the total active moiety (TAM; the sum of the risperidone and 9-OH risperidone concentrations) concentration following subcutaneous injections of TV-46000. The PK profile was best described by a double Weibull function of the in vivo release rate and by a 2-compartment disposition and elimination model. Simulations were performed to determine TV-46000 doses and dosing schedules that maintained a median profile of TAM concentrations similar to published TAM exposure following oral risperidone doses that have been correlated to a 40% to 80% dopamine-D2 receptor occupancy therapeutic window. The simulations showed that therapeutic dose ranges for TV-46000 are 50 to 125 mg for once-monthly and 100 to 250 mg for the once every 2 months regimens. This PPK model provided a basis for prediction of patient-specific exposure and dopamine-D2 receptor occupancy estimates to support further clinical development and dose selection for the phase 3 studies.


Subject(s)
Antipsychotic Agents , Risperidone , Delayed-Action Preparations/pharmacokinetics , Humans , Paliperidone Palmitate , Receptors, Dopamine D2 , Risperidone/pharmacokinetics
3.
CNS Drugs ; 32(5): 443-454, 2018 05.
Article in English | MEDLINE | ID: mdl-29637529

ABSTRACT

BACKGROUND: Subcutaneous apomorphine is used for the treatment of Parkinson's disease (PD); however, infusion site reactions are a common adverse event (AE), which can lead to treatment discontinuation. Apomorphine formulations that are more tolerable and convenient for use are needed. OBJECTIVE: Our aim was to compare the toxicity and bioavailability of ND0701, a new concentrated formulation of apomorphine free base, with one of the commercially available apomorphine HCl formulations (APO-go®, Britannia Pharmaceuticals Ltd). METHODS: (1) Preclinical study: 16 minipigs were randomly assigned to placebo, APO-go®, and ND0701 groups, and treated for 28 days. Pharmacokinetic, clinical, and pathological assessments were performed. (2) Phase I study: 18 healthy volunteers participated in an open-label, two-sequence, randomized, three single-dose, partial crossover study to compare the pharmacokinetics, safety, and tolerability of ND0701 with APO-go® (1%). RESULTS: (1) Preclinical study: No systemic toxicity was observed in apomorphine-treated minipigs, but local skin reactions were observed at the infusion sites. These effects were less frequent and less severe and recovery was more rapid for ND0701 compared with APO-go®. (2) Phase I study: Both formulations were safe and well tolerated under the conditions of the study and no severe or serious treatment-emergent AEs were reported. Infusion site nodules were reported more frequently, with higher severity, and recovered slower at APO-go®-treated sites compared with ND0701-treated sites. Bioavailability of apomorphine was comparable between the two formulations. CONCLUSION: Based on these pilot studies, ND0701 appears to be superior to APO-go® in terms of tolerability and safety, while maintaining comparable bioavailability with APO-go®, and shows promise as a future treatment for PD.


Subject(s)
Apomorphine/pharmacology , Dopamine Agonists/pharmacology , Adult , Animals , Apomorphine/adverse effects , Apomorphine/pharmacokinetics , Biological Availability , Cross-Over Studies , Dopamine Agonists/adverse effects , Dopamine Agonists/pharmacokinetics , Female , Humans , Infusions, Subcutaneous , Male , Middle Aged , Pilot Projects , Random Allocation , Skin/drug effects , Skin/pathology , Swine , Swine, Miniature
4.
Clin Ther ; 37(8): 1703-12, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26188837

ABSTRACT

PURPOSE: Crushed tablet and solution formulations of apixaban administered orally or via a nasogastric tube (NGT) may be useful in patients unable to swallow solid dose formulations. It is important to understand whether new formulations and/or methods of administration impact apixaban bioavailability and pharmacokinetic properties. These studies evaluated the relative bioavailability (Frel) of apixaban solution administered orally; oral solution administered via NGT flushed with either 5% dextrose in water (D5W) or with infant formula; oral solution via NGT with a nutritional supplement; and crushed tablet suspended in D5W and administered via NGT. METHODS: Three open-label, randomized, crossover studies were conducted in healthy adults (study 1: apixaban 10-mg tablet [reference] versus oral solution, both administered PO; study 2: apixaban 5-mg oral solution PO [reference] versus oral solution via NGT flushed with either D5W or infant formula; study 3: apixaban 5-mg oral solution PO [reference] versus apixaban 5-mg oral solution via NGT with a nutritional supplement and versus crushed tablet suspended in D5W and administered via NGT). Point estimates and 90% CIs of the geometric mean ratios (GMRs; test/reference) were generated for Cmax and AUC. Adverse events were recorded throughout each study. FINDINGS: Frel of the oral solution was 105% versus tablet, and Frel for oral solution via NGT with D5W flush, infant formula flush, nutritional supplement, and crushed tablet via NGT versus oral solution administration were 96.7%, 92.2%, 81.3%, and 95.1%, respectively. The 90% CIs of the GMRs of all AUCs met the bioequivalence criterion except that of the nutritional supplement (0.766-0.863). The corresponding GMRs for Cmax were 0.977, 0.953, 0.805, 0.682, and 0.884. For the solution via NGT flushed with D5W and for the crushed tablet, the 90% CIs of the Cmax GMRs met the bioequivalence criterion. Apixaban was well tolerated in all 3 studies; most adverse events were mild. IMPLICATIONS: Comparable Frel was observed for oral apixaban solution, tablet, NGT administration of solution flushed with D5W and infant formula, and NGT administration of crushed tablet suspension. Exposure was less when oral solution was administered via NGT with nutritional supplement. These results support several alternative methods of administering apixaban that may be useful in certain clinical situations. ClinicalTrials.gov identifiers: NCT02034565, NCT02034578, and NCT02034591.


Subject(s)
Atrial Fibrillation/prevention & control , Factor Xa Inhibitors/administration & dosage , Pyrazoles/administration & dosage , Pyridones/administration & dosage , Administration, Oral , Adolescent , Adult , Area Under Curve , Atrial Fibrillation/blood , Biological Availability , Chemistry, Pharmaceutical , Cross-Over Studies , Factor Xa Inhibitors/chemistry , Factor Xa Inhibitors/pharmacokinetics , Factor Xa Inhibitors/pharmacology , Female , Humans , Intubation, Gastrointestinal , Male , Middle Aged , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyridones/chemistry , Pyridones/pharmacokinetics , Pyridones/pharmacology , Treatment Outcome , Young Adult
5.
AAPS J ; 11(4): 653-63, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19763840

ABSTRACT

The aim of the investigation was to evaluate alternatives to standard first-in-human (FIH) designs in order to optimize the information gained from such studies by employing novel agile trial designs. Agile designs combine adaptive and flexible elements to enable optimized use of prior information either before and/or during conduct of the study to seamlessly update the study design. A comparison of the traditional 6 + 2 (active + placebo) subjects per cohort design with alternative, reduced sample size, agile designs was performed by using discrete event simulation. Agile designs were evaluated for specific adverse event models and rates as well as dose-proportional, saturated, and steep-accumulation pharmacokinetic profiles. Alternative, reduced sample size (hereafter referred to as agile) designs are proposed for cases where prior knowledge about pharmacokinetics and/or adverse event relationships are available or appropriately assumed. Additionally, preferred alternatives are proposed for a general case when prior knowledge is limited or unavailable. Within the tested conditions and stated assumptions, some agile designs were found to be as efficient as traditional designs. Thus, simulations demonstrated that the agile design is a robust and feasible approach to FIH clinical trials, with no meaningful loss of relevant information, as it relates to PK and AE assumptions. In some circumstances, applying agile designs may decrease the duration and resources required for Phase I studies, increasing the efficiency of early clinical development. We highlight the value and importance of useful prior information when specifying key assumptions related to safety, tolerability, and PK.


Subject(s)
Clinical Trials as Topic/methods , Research Design , Analysis of Variance , Area Under Curve , Computer Simulation , Cross-Over Studies , Data Interpretation, Statistical , Dose-Response Relationship, Drug , Drug-Related Side Effects and Adverse Reactions , Humans , Pharmaceutical Preparations/administration & dosage , Pharmacokinetics , Safety , Software
6.
AAPS J ; 11(1): 33-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19145490

ABSTRACT

A quickly realizable benefit of model-based drug development is in reducing uncertainty in risk/benefit, comprising individually of safety and effectiveness, two key attributes of a product evaluated for regulatory approval, marketing, and use. In this review, we investigate gaps and opportunities in using fundamental decision analytic principles in drug development and present a quantitative clinical pharmacology framework for the application of such aids for early clinical development decision making. We anticipate that implementation of such emerging tools will enable sufficient scientific understanding of the two attributes to facilitate the early termination of compounds with less than desirable risk/benefit profiles and continuance of compounds with acceptable risk/benefit profiles.


Subject(s)
Decision Support Techniques , Drug Discovery/methods , Models, Theoretical , Risk Assessment/methods , Algorithms , Computer Simulation , Probability , Professional Practice
7.
Arterioscler Thromb Vasc Biol ; 27(2): 359-65, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17110604

ABSTRACT

OBJECTIVE: Exercise increases fatty acid oxidation (FAO), improves serum high density lipoprotein cholesterol (HDLc) and triglycerides (TG), and upregulates skeletal muscle peroxisome proliferator activated receptor (PPAR)delta expression. In parallel, PPARdelta agonist-upregulated FAO would induce fatty-acid uptake (via peripheral lipolysis), and influence HDLc and TG-rich lipoprotein particle metabolism, as suggested in preclinical models. METHODS AND RESULTS: Healthy volunteers were allocated placebo (n=6) or PPARdelta agonist (GW501516) at 2.5 mg (n=9) or 10 mg (n=9), orally, once-daily for 2 weeks while hospitalized and sedentary. Standard lipid/lipoproteins were measured and in vivo fat feeding studies were conducted. Human skeletal muscle cells were treated with GW501516 in vitro and evaluated for lipid-related gene expression and FAO. Serum TG trended downwards (P=0.08, 10 mg), whereas TG clearance post fat-feeding improved with drug (P=0.02). HDLc was enhanced in both treatment groups (2.5 mg P=0.004, 10 mg P<0.001) when compared with the decrease in the placebo group (-11.5+/-1.6%, P=0.002). These findings complimented in vitro cell culture results whereby GW501516 induced FAO and upregulated CPT1 and CD36 expression, in addition to a 2-fold increase in ABCA1 (P=0.002). However, LpL expression remained unchanged. CONCLUSIONS: This is the first report of a PPARdelta agonist administered to man. In this small study, GW501516 significantly influenced HDLc and TGs in healthy volunteers. Enhanced in vivo serum fat clearance, and the first demonstrated in vitro upregulation in human skeletal muscle fat utilization and ABCA1 expression, suggests peripheral fat utilization and lipidation as potential mechanisms toward these HDL:TG effects.


Subject(s)
Lipoproteins, HDL/metabolism , PPAR delta/agonists , Thiazoles/pharmacology , Triglycerides/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adult , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cells, Cultured , Fatty Acids/metabolism , Humans , Male , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Oxidation-Reduction/drug effects , PPAR delta/genetics , PPAR delta/metabolism , Up-Regulation/drug effects
8.
Hum Gene Ther ; 16(7): 906-10, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16000071

ABSTRACT

The present study investigates a novel gene therapy approach for atrial arrhythmias, using a clarithromycin-responsive ion channel subunit mutation, hMiRP1-Q9E, cloned into an expression plasmid; wild-type expression plasmids encoding human minK-related protein 1 (hMiRP1) were also used as controls. In a series of pig studies, right atrial myocardium was injected at one site with hMiRP1-Q9E plasmid DNA; a separate site in the same right atrium was injected with wild-type plasmid or was sham injected. Two weeks after transfection intravenous clarithromycin administration resulted in a site-specific, dose-dependent prolongation of the repolarization phase of the right atrial epicardial monophasic action potential (MAP) only at the hMiRPQ9E sites, but not at sham or wild-type sites. MAP recordings before clarithromycin administration did not differ between hMiRP1-Q9E and control sites. These studies show that regional control of atrial myocardial repolarization by site-specific transfection with plasmid DNA encoding an antibiotic-responsive ion channel subunit is feasible and, because hMiRP1-Q9E-transfected sites were affected only if clarithromycin was given, provide proof of concept for a posttranslational, controllable gene therapy strategy for atrial arrhythmias.


Subject(s)
Clarithromycin/pharmacology , Heart Atria/metabolism , Potassium Channels, Voltage-Gated/genetics , Protein Processing, Post-Translational/genetics , Action Potentials , Amino Acid Substitution , Animals , Arrhythmias, Cardiac/therapy , Echocardiography , Electrophysiology , Gene Expression , Genetic Therapy/methods , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Mutation , Potassium Channels, Voltage-Gated/metabolism , Swine , Transfection , Transgenes
9.
Hum Gene Ther ; 14(9): 907-22, 2003 Jun 10.
Article in English | MEDLINE | ID: mdl-12828861

ABSTRACT

The present studies investigated the cardiac potassium channel missense mutation, Q9E-hMiRP1, for potential use as a gene therapy construct for cardiac arrhythmias. This gene abnormality is one of a number of mutations that can cause the long QT syndrome (LQTS), a hereditary arrhythmia disorder that is associated with sudden death. However, individuals who carry the Q9E-hMiRP1 variant are predisposed to developing the LQTS only after clarithromycin administration. Because the electrophysiologic mechanism of action of Q9E-hMiRP1 (i.e., diminished potassium currents resulting in delayed myocardial repolarization) is comparable to that of class III antiarrhythmic agents, we examined Q9E-hMiRP1 as a candidate gene therapy construct for site-specific treatment of reentrant atrial cardiac arrhythmias. Our rationale was also based on the hypothetical safety of the atrial use of Q9E-hMiRP1 because LQTS characteristically causes ventricular but not atrial arrhythmias. Furthermore, the possible use of clarithromycin to control the conduction effects of overexpressed Q9E-hMiRP1 pharmacologically was another attractive feature. In our studies we investigated the use of two bicistronic plasmid DNA gene vectors with either hMiRP1 or Q9E-MiRP1 and green fluorescent protein (GFP), plus a C-terminus of the hMiRP1 or of the Q9E-hMiRP1 coding region for the FLAG (MDYKDDDDK) peptide. We generated two stable cell lines using HEK293 and SH-SY5Y (human cell lines), overexpressing the genes of interest, confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blots. The expected plasma membrane localization of each overexpressed transgene was confirmed by immunofluorescent confocal fluorescent microscopy using anti-FLAG antibody. Patchclamp studies demonstrated that cells transfected with Q9E-hMiRP1 plasmid DNA exhibited significantly reduced potassium currents but only with clarithromycin administration. A novel plasmid DNA delivery system was formulated for use in our animal studies of the hMiRP1 vectors, which was composed of DNA-anti-DNA antibody-cationic lipid (DAC) heteroplexes. In vitro and in vivo studies using DAC heteroplexes containing anti-DNA antibodies with nuclear targeting capability demonstrated significantly increased transfection compared to naked DNA, and to DNA-cationic lipid complexes. Pig atrial myocardial injections of DAC heteroplexes demonstrated 16% of regional cardiac myocytes transfected using the Q9E-hMiRP1 plasmid, and 15% of cells with the hMiRP1 vector. It is concluded that the present studies support the view that site-specific gene therapy for atrial arrhythmias is feasible using plasmid vectors for overexpressing ion channel mutations that have electrophysiologic effects comparable to class III antiarrhythmic agents.


Subject(s)
Genetic Vectors , Mutation , Myocardium/metabolism , Plasmids , Potassium Channels, Voltage-Gated , Potassium Channels/genetics , Animals , Cell Line , Cell Membrane/chemistry , Feasibility Studies , Fluorescent Antibody Technique , Gene Expression , Genetic Predisposition to Disease , Genetic Therapy , Green Fluorescent Proteins , Humans , Luminescent Proteins/genetics , Male , Myocardium/cytology , Patch-Clamp Techniques , Potassium Channels/analysis , Potassium Channels/immunology , Rats , Reverse Transcriptase Polymerase Chain Reaction , Romano-Ward Syndrome/genetics , Romano-Ward Syndrome/therapy , Swine , Transfection , Transgenes
10.
J Pharm Sci ; 91(12): 2500-10, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12434393

ABSTRACT

We used a novel pharmacokinetic-pharmacodynamic (PK-PD) approach that had been applied for signal transduction kinetics to investigate the kinetics of the parasympathomimetic effect of scopolamine and atropine in rats. The parasympathetic tone was assessed by continuous measurement of the power of the high frequency band (HF) of electrocardiogram (ECG) R-R intervals obtained by power spectral analysis (PSA) of heart rate variability (HRV). To overcome the inherent noise of the HRV-HF data and to quantitatively identify temporal changes in the autonomic tone, a new approach of stepwise regression of the cumulative HF data was applied. The elevation of the parasympathetic tone occurred after a significant lag time (>70 min) following scopolamine administrations [0.25 and 0.5 mg/kg intravenous (iv) bolus or infusion over 100 min], followed by a gradual return to the baseline levels. A similar lag time in parasympathetic stimulation was observed following iv bolus administration of atropine (0.1 mg/kg). The plasma drug concentration versus time data were linked to the response versus time data using a signal transduction pharmacodynamic model that was fitted simultaneously to all four experimental data sets. This PK-PD model resolved the significant discrepancy between the concentration versus time and the response versus time patterns and successfully described the kinetics of the parasympathetic stimulation obtained for different drugs and different rates of administration. This work paves the way for further PK-PD preclinical investigations in this field.


Subject(s)
Atropine/pharmacokinetics , Parasympathomimetics/pharmacokinetics , Scopolamine/pharmacokinetics , Signal Transduction/drug effects , Animals , Atropine/blood , Atropine/pharmacology , Dose-Response Relationship, Drug , Male , Models, Biological , Models, Chemical , Parasympathomimetics/blood , Parasympathomimetics/pharmacology , Rats , Scopolamine/blood , Scopolamine/pharmacology , Signal Transduction/physiology
11.
Am J Physiol Heart Circ Physiol ; 283(3): H1142-9, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12181145

ABSTRACT

We studied heart rate variability in rats by power scaling spectral analysis (PSSA), autoregressive modeling (AR), and detrended fluctuation analysis (DFA), assessed stability by coefficient of variation between consecutive 6-h epochs, and then compared cross-correlation among techniques. These same parameters were checked from baseline conditions through acute and chronic disease states (streptozotocin-induced diabetes) followed by therapeutic intervention (insulin). Cross-correlation between methods over the entire time period was r = 0.94 (DFA and PSSA), r = 0.81 (DFA and AR), and r = 0.77 (AR and PSSA). Under baseline conditions the scaling parameter measured by DFA and PSSA and the high-frequency (HF) component measured by AR fluctuated around an average value, but these fluctuations were different for the three methods. After diabetes induction, a strong correlation was found between the HF power and the short-term scaling parameter. Despite their differences in methodology, DFA and PSSA assess changes in parasympathetic tone as detected by autoregressive modeling.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Heart Rate/physiology , Models, Biological , Parasympathetic Nervous System/physiology , Animals , Diabetes Mellitus, Experimental/drug therapy , Heart Rate/drug effects , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Male , Rats , Rats, Inbred Strains , Vagus Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...