Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202402293, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037002

ABSTRACT

A sustainable and scalable protocol for synthesizing variously functionalized sulfonamides, from amines and sulfonyl chlorides, has been developed using environmentally responsible and reusable choline chloride (ChCl)-based deep eutectic solvents (DESs). In ChCl/glycerol (1:2 mol mol-1) and ChCl/urea (1:2 mol mol-1), these reactions yield up to 97% under aerobic conditions at ambient temperature within 2-12 h. The practicality of the method is exemplified by the sustainable synthesis of an FFA4 agonist and a key building block en route to anti-Alzheimer drug BMS-299897. A subtle interplay of electronic effects and the solubility characteristics of the starting materials in the aforementioned DESs seem to be responsible for driving the reaction successfully over the hydrolysis of sulfonyl chlorides. The procedure's eco-friendliness is validated  by quantitative metrics like the E-factor and the EcoScale, with products isolated by extraction or filtration after decantation.

2.
Molecules ; 29(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543038

ABSTRACT

An enhanced, sustainable, and efficient method for synthesizing tacrine, achieving a 98% yield, has been developed by replacing volatile organic compounds with more eco-friendly solvents such as deep eutectic solvent (DESs). The optimized protocol scales easily to 3 g of substrate without yield loss and extends successfully to tacrine derivatives with reduced hepatotoxicity. Particularly notable is the synthesis of novel triazole-based derivatives, yielding 90-95%, by integrating an in situ preparation of aryl azides in DESs with N-propargyl-substituted tacrine derivatives. Quantitative metrics validate the green aspects of the reported drug development processes.

3.
Org Biomol Chem ; 22(9): 1885-1891, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38349132

ABSTRACT

A new scalable synthesis of (E)-α,ß-unsaturated esters has been developed using protic, non-toxic, and biodegradable deep eutectic solvents through the Horner-Wadsworth-Emmons reaction between triethyl phosphonates and (hetero)aromatic carbonyl compounds, encompassing electron-withdrawing and electron-donating groups. Stereoselective preparation of disubstituted or trisubstituted ethyl cinnamate derivatives is achieved in the presence of LiOH, K2CO3, or DBU as bases, at room temperature and under air. Demonstrated with the synthesis of (E)-ethyl 3-(4-bromophenyl)acrylate, the same eutectic mixture (choline chloride/urea) proved to be reusable for three consecutive runs. Gram-scale reactions (10 mmol) can be carried out without the formation of side products, thereby ensuring high atom economy and an EcoScale score of 71.

4.
Int J Biol Macromol ; 253(Pt 5): 127174, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37783252

ABSTRACT

With respect to the Parkinson's disease (PD), herein, we aimed at synthetizing and characterizing two novel macromolecular conjugates where dopamine (DA) was linked to N,O-carboxymethyl chitosan or O-carboxymethyl chitosan, being both conjugates obtained from an organic solvent free synthetic procedure. They were characterized by FT-IR, 1H NMR spectroscopies, whereas thermal analysis (including Differential Scanning Calorimetry and Thermal Gravimetric Analysis) revealed good stability of the two conjugates after exposure at temperatures close to 300 °C. Release studies in simulated nasal fluid elucidated that a faster release occurred since O-carboxymethyl chitosan-DA conjugate maybe due to the less steric hindrance exerted by the polymeric moiety. The CMCS-DA conjugates prepared in aqueous medium may self-assembly to form polymeric micelles and/or may form polymeric nanoparticles. TEM and Photon correlation spectroscopy lent support for polymeric nanoparticle formation. Moreover, such CMCS-DA conjugates showed antioxidant activity, as demonstrated by DPPH radical scavenging assay. Finally, cytocompatibility studies with neuroblastoma SH-SY5Y cells showed no cytotoxicity of both conjugates, whereas their uptake increased from 2.5 to 24 h and demonstrated in 40-66 % of cells.


Subject(s)
Chitosan , Neuroblastoma , Humans , Drug Carriers/chemistry , Dopamine , Spectroscopy, Fourier Transform Infrared , Chitosan/chemistry
5.
Angew Chem Int Ed Engl ; 62(30): e202304720, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37166367

ABSTRACT

Advancing the development of perfecting the use of polar organometallics in bio-inspired solvents, we report on the effective generation in batch of organosodium compounds, by the oxidative addition of a C-Cl bond to sodium, a halogen/sodium exchange, or by direct sodiation, when using sodium bricks or neopentylsodium in hexane as sodium sources. C(sp3 )-, C(sp2 )-, and C(sp)-hybridized alkyl and (hetero)aryl sodiated species have been chemoselectively trapped (in competition with protonolysis), with a variety of electrophiles when working "on water", or in biodegradable choline chloride/urea or L-proline/glycerol eutectic mixtures, under hydrous conditions and at room temperature. Additional benefits include a very short reaction time (20 s), a wide substrate scope, and good to excellent yields (up to 98 %) of the desired adducts. The practicality of the proposed protocol was demonstrated by setting up a sodium-mediated multigram-scale synthesis of the anticholinergic drug orphenadrine.

6.
Enzyme Microb Technol ; 163: 110164, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36455467

ABSTRACT

The development of biorefinery approaches is of great relevance for the sustainable production of valuable compounds. In accordance with circular economy principles, waste cooking oils (WCOs) are renewable resources and biorefinery feedstocks, which contribute to a reduced impact on the environment. Frequently, this waste is wrongly disposed of into municipal sewage systems, thereby creating problems for the environment and increasing treatment costs in wastewater treatment plants. In this study, regenerated WCOs, which were intended for the production of biofuels, were transformed through a chemo-enzymatic approach to produce hydroxy fatty acids, which were further used in polycondensation reaction for polyester production. Escherichia coli whole cell biocatalyst containing the recombinantly produced Elizabethkingia meningoseptica Oleate hydratase (Em_OhyA) was used for the biocatalytic hydration of crude WCOs-derived unsaturated free fatty acids for the production of hydroxy fatty acids. Further hydrogenation reaction and methylation of the crude mixture allowed the production of (R)- 10-hydroxystearic acid methyl ester that was further purified with a high purity (> 90%), at gram scale. The purified (R)- 10-hydroxystearic acid methyl ester was polymerized through a polycondensation reaction to produce the corresponding polyester. This work highlights the potential of waste products to obtain bio-based hydroxy fatty acids and polyesters through a biorefinery approach.


Subject(s)
Fatty Acids , Polyesters , Oils , Biofuels , Fatty Acids, Unsaturated , Cooking , Esters
7.
Molecules ; 27(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36364422

ABSTRACT

Dimethindene is a selective histamine H1 antagonist and is commercially available as a racemate. Upon analyzing the synthetic pathways currently available for the industrial preparation of dimethindene, we set up a sustainable approach for the synthesis of this drug, switching from petroleum-based volatile organic compounds (VOCs) to eco-friendly solvents, such as 2-methyltetrahydrofuran (2-MeTHF) and cyclopentyl methyl ether (CPME) belonging to classes 3 and 2, respectively. Beyond decreasing the environmental impact of the synthesis (E-factor: 24.1-54.9 with VOCs; 12.2-22.1 with 2-MeTHF or CPME), this switch also improved the overall yield of the process (from 10% with VOCs to 21-22% with 2-MeTHF or CPME) and remarkably simplified the manual operations, working under milder conditions. Typical metrics applied at the first and second pass, according to the CHEM21 metrics toolkit, were also calculated for the whole synthetic procedure of dimethindene, and the results were compared with those of the classical procedure.


Subject(s)
Dimethindene , Methyl Ethers , Solvents , Histamine
8.
ChemistryOpen ; 11(10): e202200160, 2022 10.
Article in English | MEDLINE | ID: mdl-36229408

ABSTRACT

An efficient, selective and sustainable protocol was developed for the CuCl2 /TEMPO/TMEDA-catalyzed aerobic oxidation of activated alcohols to the corresponding carbonyl compounds using water or the environmentally friendly low melting mixture (LMM) d-fructose-urea as the reaction medium. Such oxidation reactions proceed under mild (room temperature or 40 °C) and aerobic conditions, with the carbonyl derivatives isolated in up to 98 % yield and within 4 h reaction time when using the above-mentioned LMM. The potential application of this methodology is demonstrated by setting up useful telescoped, one-pot two-step hybrid transformations for the direct conversion of primary alcohols either into secondary alcohols or into valuable nitroalkenes, by combining oxidation processes with nucleophilic additions promoted by highly polarized organometallic compounds (Grignard and organolithium reagents) or with nitroaldol (Henry) reactions, respectively.


Subject(s)
Alcohols , Organometallic Compounds , Catalysis , Fructose , Urea , Water
9.
Bioelectrochemistry ; 147: 108207, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35839687

ABSTRACT

Bacillus subtilis is a Gram-positive, spore-forming bacterium with a versatile and adaptable metabolism, which makes it a viable cell factory for microbial production. Electroactivity has recently been identified as a cellular characteristic linked with the metabolic activity of B. subtilis. The enhancement of B. subtilis electroactivity can positively enhance bioproduction of high-added value metabolites under electrofermentative conditions. Here, we explored the use of deep eutectic solvents (DESs) and DES components as biocompatible nutrient additives for enhancing electroactivity of B. subtilis. The strongest electroactivity was obtained in an aqueous choline chloride: glycerol (1:2 mol mol-1) eutectic mixture. At low concentration (50-500 mM), this mixture induced a pseudo-diauxic increase in planktonic growth and increased biofilm formation, likely due to a nutritional and osmoprotectant effect. Similarities in electroactivity enhancements of choline chloride-based eutectic mixtures and quinone redox metabolism in B. subtilis were detected using high performance liquid chromatography and differential pulse voltammetry. Results show that choline chloride-based aqueous eutectic mixtures can enhance biomass and productivity in biofilm-based electrofermentation. However, the specific mechanism needs to be fully elucidated.


Subject(s)
Bacillus subtilis , Deep Eutectic Solvents , Biofilms , Choline , Solvents/chemistry , Water/chemistry
10.
ChemSusChem ; 15(1): e202102211, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34762333

ABSTRACT

An efficient and novel protocol was developed for a Cu-catalyzed Ullmann-type aryl alkyl ether synthesis by reacting various (hetero)aryl halides (Cl, Br, I) with alcohols as active components of environmentally benign choline chloride-based eutectic mixtures. Under optimized conditions, the reaction proceeded under mild conditions (80 °C) in air, in the absence of additional ligands, with a catalyst [CuI or CuII species] loading up to 5 mol% and K2 CO3 as the base, providing the desired aryloxy derivatives in up to 98 % yield. The potential application of the methodology was demonstrated in the valorization of cheap, easily available, and naturally occurring polyols (e. g., glycerol) for the synthesis of some pharmacologically active aryloxypropanediols (Guaiphenesin, Mephenesin, and Chlorphenesin) on a 2 g scale in 70-96 % yield. Catalyst, base, and deep eutectic solvent could easily and successfully be recycled up to seven times with an E-factor as low as 5.76.


Subject(s)
Alcohols , Copper , Catalysis , Deep Eutectic Solvents , Ligands , Solvents
11.
Materials (Basel) ; 14(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201634

ABSTRACT

BACKGROUND: The blood-brain barrier (BBB) bypass of dopamine (DA) is still a challenge for supplying it to the neurons of Substantia Nigra mainly affected by Parkinson disease. DA prodrugs have been studied to cross the BBB, overcoming the limitations of DA hydrophilicity. Therefore, the aim of this work is the synthesis and preliminary characterization of an oxidized alginate-dopamine (AlgOX-DA) conjugate conceived for DA nose-to-brain delivery. METHODS: A Schiff base was designed to connect oxidized polymeric backbone to DA and both AlgOX and AlgOX-DA were characterized in terms of Raman, XPS, FT-IR, and 1H- NMR spectroscopies, as well as in vitro mucoadhesive and release tests. RESULTS: Data demonstrated that AlgOX-DA was the most mucoadhesive material among the tested ones and it released the neurotransmitter in simulated nasal fluid and in low amounts in phosphate buffer saline. Results also demonstrated the capability of scanning near-field optical microscopy to study the structural and fluorescence properties of AlgOX, fluorescently labeled with fluorescein isothiocyanate microstructures. Interestingly, in SH-SY5Y neuroblastoma cell line up to 100 µg/mL, no toxic effect was derived from AlgOX and AlgOX-DA in 24 h. CONCLUSIONS: Overall, the in vitro performances of AlgOX and AlgOX-DA conjugates seem to encourage further ex vivo and in vivo studies in view of nose-to-brain administration.

12.
Org Biomol Chem ; 19(8): 1773-1779, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33543179

ABSTRACT

An efficient and selective N-functionalization of amides is first reported via a CuI-catalyzed Goldberg-type C-N coupling reaction between aryl iodides and primary/secondary amides run either in Deep Eutectic Solvents (DESs) or water as sustainable reaction media, under mild and bench-type reaction conditions (absence of protecting atmosphere). Higher activities were observed in an aqueous medium, though the employment of DESs expanded and improved the scope of the reaction to include also aliphatic amides. Additional valuable features of the reported protocol include: (i) the possibility to scale up the reaction without any erosion of the yield/reaction time; (ii) the recyclability of both the catalyst and the eutectic solvent up to 4 consecutive runs; and (iii) the feasibility of the proposed catalytic system for the synthesis of biologically active molecules.

13.
Angew Chem Int Ed Engl ; 60(19): 10632-10636, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33605516

ABSTRACT

Pd-catalyzed Negishi cross-coupling reactions between organozinc compounds and (hetero)aryl bromides have been reported when using bulk water as the reaction medium in the presence of NaCl or the biodegradable choline chloride/urea eutectic mixture. Both C(sp3 )-C(sp2 ) and C(sp2 )-C(sp2 ) couplings have been found to proceed smoothly, with high chemoselectivity, under mild conditions (room temperature or 60 °C) in air, and in competition with protonolysis. Additional benefits include very short reaction times (20 s), good to excellent yields (up to 98 %), wide substrate scope, and the tolerance of a variety of functional groups. The proposed novel protocol is scalable, and the practicability of the method is further highlighted by an easy recycling of both the catalyst and the eutectic mixture or water.

14.
Org Biomol Chem ; 19(12): 2558-2577, 2021 03 28.
Article in English | MEDLINE | ID: mdl-33471017

ABSTRACT

Owing to a growing awareness towards environmental impact, the search for "greener", safer, and cost-effective solvents able to replace petroleum-derived solvents has never been greater today. In this context, the use of environmentally responsible solvents like water and the so-called deep eutectic solvents (DESs), constructed from bio-based compounds, has recently experienced important growth in several fields of sciences. This short review highlights the key features of the chemistry of water and (hydrated) DESs when applied to metal- and biocatalyzed transformations as well as to the synthesis of active pharmaceutical ingredients (APIs) and other biologically relevant compounds by providing, through discussion of all relevant literature over the past five years, a comparison of the outcomes of the reactions when carried out in one or the other solvent.


Subject(s)
Enzymes/metabolism , Metals/chemistry , Organic Chemicals/chemical synthesis , Organic Chemicals/metabolism , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/metabolism , Water/chemistry , Catalysis , Enzymes/chemistry , Molecular Structure , Organic Chemicals/chemistry , Pharmaceutical Preparations/chemistry , Solvents/chemistry
15.
Beilstein J Org Chem ; 16: 1915-1923, 2020.
Article in English | MEDLINE | ID: mdl-32802208

ABSTRACT

We report that phenacyl azides are key compounds for a regiodivergent synthesis of valuable, functionalized imidazole (32-98% yield) and pyrimidine derivatives (45-88% yield), with a broad substrate scope, when using deep eutectic solvents [choline chloride (ChCl)/glycerol (1:2 mol/mol) and ChCl/urea (1:2 mol/mol)] as environmentally benign and non-innocent reaction media, by modulating the temperature (25 or 80 °C) in the presence or absence of bases (Et3N).

16.
ChemSusChem ; 13(18): 4967-4973, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32666628

ABSTRACT

Highly polarized lithium phosphides (LiPR2 ) were synthesized, for the first time, in deep eutectic solvents as sustainable reaction media, at room temperature and in the absence of protecting atmosphere, through direct deprotonation of both aliphatic and aromatic secondary phosphines (HPR2 ) by n-BuLi. The subsequent addition of in-situ generated LiPR2 to aldehydes or epoxides proceeded quickly and chemoselectively, thereby allowing the straightforward access to the corresponding α- or ß-hydroxy phosphine oxides, respectively, under air and at room temperature (bench conditions), which are traditionally considered as textbook-prohibited conditions in the field of polar organometallic chemistry of s-block elements.

17.
ChemSusChem ; 13(14): 3583-3588, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32445433

ABSTRACT

Highly polarized organometallic compounds of s-block elements are added smoothly to chiral N-tert-butanesulfinyl imines in the biodegradable d-sorbitol/choline chloride eutectic mixture, thereby granting access to enantioenriched primary amines after quantitatively removing the sulfinyl group. The practicality of the method is further highlighted by proceeding at ambient temperature and under air, with very short reaction times (2 min), enabling the preparation of diastereoisomeric sulfinamides in very good yields (74-98 %) and with a broad substrate scope, and the possibility of scaling up the process. The method is demonstrated in the asymmetric syntheses of both the chiral amine side-chain of (R,R)-Formoterol (96 % ee) and the pharmaceutically relevant (R)-Cinacalcet (98 % ee).

18.
Chemistry ; 26(40): 8742-8748, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32181938

ABSTRACT

We report the first transition metal catalyst- and ligand-free conjugate addition of lithium tetraorganozincates (R4 ZnLi2 ) to nitroolefins. Displaying enhanced nucleophilicity combined with unique chemoselectivity and functional group tolerance, homoleptic aliphatic and aromatic R4 ZnLi2 provide access to valuable nitroalkanes in up to 98 % yield under mild conditions (0 °C) and short reaction time (30 min). This is particularly remarkable when employing ß-nitroacrylates and ß-nitroenones, where despite the presence of other electrophilic groups, selective 1,4 addition to the C=C is preferred. Structural and spectroscopic studies confirmed the formation of tetraorganozincate species in solution, the nature of which has been a long debated issue, and allowed to unveil the key role played by donor additives on the aggregation and structure of these reagents. Thus, while chelating N,N,N',N'-tetramethylethylenediamine (TMEDA) and (R,R)-N,N,N',N'-tetramethyl-1,2-diaminocyclohexane (TMCDA) favour the formation of contacted-ion pair zincates, macrocyclic Lewis donor 12-crown-4 triggers an immediate disproportionation process of Et4 ZnLi2 into equimolar amounts of solvent-separated Et3 ZnLi and EtLi.

19.
Molecules ; 25(3)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32013037

ABSTRACT

An unsubstituted 2-hydroxyphenylbenzimidazole has recently been included as a scaffold in a series of hybrids (including the hit compound PZ1) based on the framework of the acetylcholinesterase (AChE) inhibitor Donepezil, which is a new promising multi-target ligand in Alzheimer's disease (AD) treatment. Building upon these findings, we have now designed and completed the whole synthesis of PZ1 in the so-called deep eutectic solvents (DESs), which have emerged as an unconventional class of bio-renewable reaction media in green synthesis. Under optimized reaction conditions, the preparation of a series of 2-hydroxyphenylbenzimidazole-based nuclei has also been perfected in DESs, and comparison with other routes which employ toxic and volatile organic solvents (VOCs) provided. The functionalization of the aromatic ring can have implications on some important biological properties of the described derivatives and will be the subject of future studies of structure-activity relationships (SARs).


Subject(s)
Benzimidazoles/chemical synthesis , Donepezil/chemistry , Solvents/chemical synthesis , Benzimidazoles/chemistry , Green Chemistry Technology , Solvents/chemistry , Structure-Activity Relationship
20.
Front Chem ; 7: 723, 2019.
Article in English | MEDLINE | ID: mdl-31737602

ABSTRACT

The CuI-catalyzed Ullmann amine cross-coupling between (hetero)aryl halides (Br, I) and aromatic and aliphatic amines has been accomplished in deep eutectic solvents as environmentally benign and recycling reaction media. Under optimized conditions, the reaction proceeds smoothly under mild conditions (60-100°C) in air, in the absence of ligands, with a catalyst (CuI) loading of 10 mol% and K2CO3 (aliphatic primary and secondary amines) or t-BuOK (aromatic amines) as the base. A variety of amines have been synthesized in yields up to 98% with a broad substrate scope.

SELECTION OF CITATIONS
SEARCH DETAIL
...