Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9792, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328603

ABSTRACT

The need for more economical catalysts for various combustion reactions is continuously driving catalyst development. We present Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) as suitable techniques for fast examination of catalyst activity for combustion reactions. The heat of reaction ΔHr generated at the catalyst in a combustible atmosphere is the measure for estimating the capability of the catalyst. Present investigations verify the reliability of both methods for the pre-selection of catalysts for further extensive investigations. To simplify the measurements and the result evaluation, a new measurement routine is introduced which is more suitable for rapid catalyst investigation than the conventional approach. For initial investigations, oxidation of 1% methane on a cobalt oxide catalyst was used. First, DTA measurements were performed. The vessel size and the amount of catalyst are considered as factors influencing the thermal signal. Simultaneous mass spectrometry measurements were used to better understand the formation of the DTA response. Comparable DSC investigations were then conducted. Finally, the behavior of catalyst was compared with two commercial palladium/alumina catalysts using DTA and DSC. Our investigations show that DTA and DSC are powerful methods to identify potential catalysts in a fast and reproducible manner, provided that all parameters influencing the thermal signal are kept constant.


Subject(s)
Aluminum Oxide , Reproducibility of Results , Catalysis , Oxidation-Reduction , Aluminum Oxide/chemistry , Calorimetry, Differential Scanning
2.
Sensors (Basel) ; 21(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34210063

ABSTRACT

A photoacoustic gas detector for SO2 was developed for ship exhaust gas emission monitoring. The basic measurement setup is based on the absorption of electromagnetic radiation of SO2 at 285 nm wavelength. A commercially available ultraviolet (UV) light-emitting diode (LED) is used as the light source and a micro-electro-mechanical system (MEMS) microphone as the detector. In order to achieve the required detection limits in marine applications, a measuring cell which allows an acoustically resonant amplification of the photoacoustic signal was developed and characterized. A limit of detection of 1 ppm was achieved in lab conditions during continuous gas flow. Long-term measurements on a container ship demonstrated the application relevance of the developed system.


Subject(s)
Ships , Spectrum Analysis
3.
Rev Sci Instrum ; 91(11): 115102, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33261461

ABSTRACT

In this paper, we describe a measuring system based on the Van der Pauw principle with four calibrated type S thermocouples. By means of this system, we conducted traceable measurements of the absolute Seebeck coefficients and the electrical conductivity of thermoelectric bulk materials to establish a precise determination of the power factor. The results of a comparative investigation of metallic (ISOTAN® and Nickel) and semiconducting (SiGe) materials in the temperature range of 300 K-1100 K are presented. The good agreement of the Seebeck coefficients and electrical conductivities measured using the system and the data reported from the literature and values of these transport properties premeasured using another measuring system forms the basis for the usage of the system for the further certification of thermoelectric reference materials for the power factor up to 1100 K.

4.
Sensors (Basel) ; 19(3)2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30754637

ABSTRACT

Nitrogen dioxide (NO 2 ) is a poisonous trace gas that requires monitoring in urban areas. Accurate measurement in sub-ppm concentrations represents a wide application field for suitable economical sensors. We present a novel approach to measure NO 2 with a photoacoustic sensor using a T-shaped resonance cell. An inexpensive UV-LED with a peak wavelength of 405 nm as radiation source as well as a commercial MEMS microphone for acoustic detection were used. In this work, a cell has been developed that enables a "non-contact" feedthrough of the divergent LED beam. Thus, unwanted background noise due to absorption on the inside walls is minimized. As part of the development, an acoustic simulation has been carried out to find the resonance frequencies and to visualize the resulting standing wave patterns in various geometries. The pressure amplitude was calculated for different shapes and sizes. A model iteratively optimized in this way forms the basis of a construction that was built for gas measurement by rapid prototyping methods. The real resonance frequencies were compared to the ones found in simulation. The limit of detection was determined in a nitrogen dioxide measurement to be 200 ppb (6 σ ) for a cell made of aluminum.

5.
Sensors (Basel) ; 17(12)2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29206133

ABSTRACT

Gas leak detection is an important issue in infrastructure monitoring and industrial production. In this context, infrared (IR) absorption spectroscopy is a major measurement method. It can be applied in an extractive or remote detection scheme. Tunable laser spectroscopy (TLS) instruments are able to detect CH4 leaks with column densities below 10 ppm·m from a distance of 30 m in less than a second. However, leak detection of non-IR absorbing gases such as N2 is not possible in this manner. Due to the fact that any leaking gas displaces or dilutes the surrounding background gas, an indirect detection is still possible. It is shown by sensitive TLS measurements of the ambient background concentration of O2 that N2 leaks can be localized with extractive and standoff methods for distances below 1 m. Minimum leak rates of 0.1 mbar·L/s were determined. Flow simulations confirm that the leakage gas typically effuses in a narrow jet. The sensitivity is mainly determined by ambient flow conditions. Compared to TLS detection of CH4 at 1651 nm, the indirect method using O2 at 761 nm is experimentally found to be less sensitive by a factor of 100. However, the well-established TLS of O2 may become a universal tool for rapid leakage screening of vessels that contain unknown or inexpensive gases, such as N2.

6.
J Phys Condens Matter ; 26(47): 474203, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25352522

ABSTRACT

We report low-temperature transport experiments on atomic-size contacts of bismuth that are fabricated using the mechanically controlled break-junction technique at low temperatures. We observe stable contacts with conductance values at fractions of one conductance quantum G0 = 2e(2)/h, as is expected for systems with long Fermi wavelength. We defer two preferred conductance scales: the lower one is in the order of 0.015 G0 and can be attributed to single-atom Bi contact, while the higher one amounts to 0.15 G0, as indicated by the appearance of multiples of this value in the conductance histogram. Rich magneto-transport behaviour with significant changes in the magneto-conductance is found in the whole conductance range. Although for the pristine samples and large contacts with G > 5 G0, indications for Shubnikov-de Haas oscillations are present, the smallest contacts show pronounced conductance fluctuations that decay rapidly when a magnetic field is applied. Moreover, large variations are observed when a finite bias voltage is applied. These findings are interpreted as the transition from the diffusive to the ballistic and the ultra-quantum regime when lowering the contact size.

7.
Phys Rev Lett ; 106(19): 196804, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21668188

ABSTRACT

The changes of molecular conformation, contact geometry, and metal-molecule bonding are revealed by inelastic-electron-tunneling spectroscopy measurements characterizing the molecular vibrational modes and the metal-phonon modes in alkanedithiol molecular junctions at low temperature. Combining inelastic-electron-tunneling spectroscopy with mechanical control and electrode material variation (Au or Pt) enables separating the influence of contact geometry and of molecular conformation. The mechanical strain of different electrode materials can be imposed onto the molecule, opening a new route for controlling the charge transport through individual molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...