Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7846, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057298

ABSTRACT

For trace gas sensing and precision spectroscopy, optical cavities incorporating low-loss mirrors are indispensable for path length and optical intensity enhancement. Optical interference coatings in the visible and near-infrared (NIR) spectral regions have achieved total optical losses below 2 parts per million (ppm), enabling a cavity finesse in excess of 1 million. However, such advancements have been lacking in the mid-infrared (MIR), despite substantial scientific interest. Here, we demonstrate a significant breakthrough in high-performance MIR mirrors, reporting substrate-transferred single-crystal interference coatings capable of cavity finesse values from 200 000 to 400 000 near 4.5 µm, with excess optical losses (scatter and absorption) below 5 ppm. In a first proof-of-concept demonstration, we achieve the lowest noise-equivalent absorption in a linear cavity ring-down spectrometer normalized by cavity length. This substantial improvement in performance will unlock a rich variety of MIR applications for atmospheric transport and environmental sciences, detection of fugitive emissions, process gas monitoring, breath-gas analysis, and verification of biogenic fuels and plastics.

2.
Opt Lett ; 46(15): 3677-3680, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329254

ABSTRACT

Dual-comb (DC) ranging is an established method for high-precision and high-accuracy distance measurements. It is, however, restricted by an inherent length ambiguity and the requirement for complex control loops for comb stabilization. Here, we present a simple approach for expanding the ambiguity-free measurement length of DC ranging by exploiting the intrinsic intensity modulation of a single-cavity dual-color DC for simultaneous time-of-flight and DC distance measurements. This measurement approach enables the measurement of distances up to several hundred kilometers with the precision and accuracy of a DC interferometric setup while providing a high data acquisition rate (≈2kHz) and requiring only the repetition rate of one of the combs to be stabilized.

3.
Opt Express ; 28(13): 18946-18968, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672183

ABSTRACT

We present a flexible all-polarization-maintaining (PM) mode-locked ytterbium (Yb):fiber laser based on a nonlinear amplifying loop mirror (NALM). In addition to providing detailed design considerations, we discuss the different operation regimes accessible by this versatile laser architecture and experimentally analyze five representative mode-locking states. These five states were obtained in a 78-MHz configuration at different intracavity group delay dispersion (GDD) values ranging from anomalous (-0.035 ps2) to normal (+0.015 ps2). We put a particular focus on the characterization of the intensity noise as well as the free-running linewidth of the carrier-envelope-offset (CEO) frequency as a function of the different operation regimes. We observe that operation points far from the spontaneous emission peak of Yb (∼1030 nm) and close to zero intracavity dispersion can be found, where the influence of pump noise is strongly suppressed. For such an operation point, we show that a CEO linewidth of less than 10-kHz at 1 s integration can be obtained without any active stabilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...