Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(7): e40536, 2012.
Article in English | MEDLINE | ID: mdl-22911702

ABSTRACT

Coherent anti-Stokes Raman scattering (CARS) microscopy is applied for the first time for the evaluation of the protein secondary structure of polyglutamine (polyQ) aggregates in vivo. Our approach demonstrates the potential for translating information about protein structure that has been obtained in vitro by X-ray diffraction into a microscopy technique that allows the same protein structure to be detected in vivo. For these studies, fibres of polyQ containing peptides (D(2)Q(15)K(2)) were assembled in vitro and examined by electron microscopy and X-ray diffraction methods; the fibril structure was shown to be cross ß-sheet. The same polyQ fibres were evaluated by Raman spectroscopy and this further confirmed the ß-sheet structure, but indicated that the structure is highly rigid, as indicated by the strong Amide I signal at 1659 cm(-1). CARS spectra were simulated using the Raman spectrum taking into account potential non-resonant contributions, providing evidence that the Amide I signal remains strong, but slightly shifted to lower wavenumbers. Combined CARS (1657 cm(-1)) and multi-photon fluorescence microscopy of chimeric fusions of yellow fluorescent protein (YFP) with polyQ (Q40) expressed in the body wall muscle cells of Caenorhabditis elegans nematodes (1 day old adult hermaphrodites) revealed diffuse and foci patterns of Q40-YFP that were both fluorescent and exhibited stronger CARS (1657 cm(-1)) signals than in surrounding tissues at the resonance for the cross ß-sheet polyQ in vitro.


Subject(s)
Microscopy, Scanning Probe/methods , Peptides/chemistry , Spectrum Analysis, Raman/methods , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/chemistry , Protein Conformation , X-Ray Diffraction
2.
Phys Biol ; 9(2): 024001, 2012.
Article in English | MEDLINE | ID: mdl-22473086

ABSTRACT

Here we present the first evidence showing that eukaryotic cells can be stably trapped in a single focused Gaussian beam with an orientation that is defined by the nucleus. A mammalian eukaryotic cell (in suspension) is trapped and is re-oriented in the focus of a linearly polarized Gaussian beam with a waist of dimension smaller than the radius of the nucleus. The cell reaches a position relative to the focus that is dictated by the nucleus and nuclear components. Our studies illustrate that the force exerted by the optical tweezers at locations within the cell can be predicted theoretically; the data obtained in this way is consistent with the experimental observations.


Subject(s)
Cytological Techniques/methods , Eukaryotic Cells/cytology , Optical Tweezers , Animals , Cell Line, Tumor , Cell Nucleus/ultrastructure , Cytological Techniques/instrumentation , Humans , Lasers , Ytterbium
3.
Opt Express ; 14(2): 847-57, 2006 Jan 23.
Article in English | MEDLINE | ID: mdl-19503404

ABSTRACT

Comprehensive reflectivity mapping of the angular dispersion of nanostructured arrays comprising of inverted pyramidal pits is demonstrated. By comparing equivalently structured dielectric and metallic arrays, diffraction and plasmonic features are readily distinguished. While the diffraction features match expected theory, localised plasmons are also observed with severely flattened energy dispersions. Using pit arrays with identical pitch, but graded pit dimensions, energy scaling of the localized plasmon is observed. These localised plasmons are found to match a simple model which confines surface plasmons onto the pit sidewalls thus allowing an intuitive picture of the plasmons to be developed. This model agrees well with a 2D finite-difference time-domain simulation which shows the same dependence on pit dimensions. We believe these tuneable plasmons are responsible for the surface-enhancement of the Raman scattering (SERS) of an attached layer of benzenethiol molecules. Such SERS substrates have a wide range of applications both in security, chemical identification, environmental monitoring and healthcare.

SELECTION OF CITATIONS
SEARCH DETAIL
...