Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 139: 111579, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33845375

ABSTRACT

Alzheimer's disease (AD) is the most common type of dementia worldwide, characterized by the deposition of neurofibrillary tangles and amyloid-ß (Aß) peptides in the brain. Additionally, increasing evidence demonstrates that a neuroinflammatory state and oxidative stress, iron-dependent, play a crucial role in the onset and disease progression. Besides conventional therapies, the use of natural-based products represents a future medical option for AD treatment and/or prevention. We, therefore, evaluated the effects of a ribonucleotides-based ingredient (Ribodiet®) in a non-genetic mouse model of AD. To this aim, mice were injected intracerebroventricularly (i.c.v.) with Aß1-42 peptide (3 µg/3 µl) and after with Ribodiet® (0.1-10 mg/mouse) orally (p.o.) 3 times weekly for 21 days following the induction of experimental AD. The mnemonic and cognitive decline was then evaluated, and, successively, we have assessed ex vivo the modulation of different cyto-chemokines on mice brain homogenates. Finally, the level of GFAP, S100ß, and iron-related metabolic proteins were monitored as markers of reactive gliosis, neuro-inflammation, and oxidative stress. Results indicate that Ribodiet® lessens oxidative stress, brain inflammation, and amyloid pathology via modulation of iron-related metabolic proteins paving the way for its rationale use for the treatment of AD and other age-related diseases.


Subject(s)
Alzheimer Disease/prevention & control , Cerebral Amyloid Angiopathy/prevention & control , Dietary Supplements , Encephalitis/prevention & control , Oxidative Stress/drug effects , Ribonucleotides/therapeutic use , Alzheimer Disease/psychology , Amyloid beta-Peptides , Animals , Behavior, Animal/drug effects , Biomarkers , Cerebral Amyloid Angiopathy/psychology , Diet , Encephalitis/psychology , Gliosis/prevention & control , Injections, Intraventricular , Male , Mice , Nonheme Iron Proteins/metabolism , Peptide Fragments , Psychomotor Performance/drug effects , Ribonucleotides/pharmacology
2.
Molecules ; 25(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353211

ABSTRACT

Several natural-based compounds and products are reported to possess anti-inflammatory and immunomodulatory activity both in vitro and in vivo. The primary target for these activities is the inhibition of eicosanoid-generating enzymes, including phospholipase A2, cyclooxygenases (COXs), and lipoxygenases, leading to reduced prostanoids and leukotrienes. Other mechanisms include modulation of protein kinases and activation of transcriptases. However, only a limited number of studies and reviews highlight the potential modulation of the coupling enzymatic pathway COX-2/mPGES-1 and Th17/Treg circulating cells. Here, we provide a brief overview of natural products/compounds, currently included in the Italian list of botanicals and the BELFRIT, in different fields of interest such as inflammation and immunity. In this context, we focus our opinion on novel therapeutic targets such as COX-2/mPGES-1 coupling enzymes and Th17/Treg circulating repertoire. This paper is dedicated to the scientific career of Professor Nicola Mascolo for his profound dedication to the study of natural compounds.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Autoimmune Diseases/drug therapy , Biological Products/pharmacology , Cyclooxygenase 1/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/chemistry , Autoimmune Diseases/metabolism , Biological Products/chemistry , Complementary Therapies , Cyclooxygenase 2/metabolism , Humans , Inflammation/metabolism , Microsomes/drug effects , Microsomes/metabolism , Th17 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...