Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869181

ABSTRACT

Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer that emerges as tumors become resistant to hormone therapies or, rarely, arises de novo in treatment-naïve patients. The urgent need for effective therapies against NEPC is hampered by the limited knowledge of the biology governing this lethal disease. Based on our prior observations in the TRAMP spontaneous prostate cancer model, in which the genetic depletion of either mast cells (MCs) or the matricellular protein osteopontin (OPN) increases NEPC frequency, we tested the hypothesis that MCs can restrain NEPC through OPN production, using in vitro co-cultures between murine or human tumor cell lines and MCs, and in vivo experiments. We unveiled a role for the intracellular isoform of OPN (iOPN), so far neglected compared to the secreted isoform. Mechanistically, we unraveled that iOPN promotes TNF production in MCs via the TLR2/TLR4-MyD88 axis, specifically triggered by the encounter with NEPC cells. We found that MC-derived TNFin turn, hampered the growth of NEPC. We then identified the protein syndecan-1 (SDC1) as the NEPC-specific TLR2/TLR4 ligand that triggered this pathway. Interrogating published single-cell RNA-sequencing data we validated this mechanism in a different mouse model. Translational relevance of the results was provdied by in silco analyses of available human NEPC datasets, and by immunofluorescence on patient-derived adenocarcinoma and NEPC lesions. Overall, our results show that MCs actively inhibit NEPC, paving the way for innovative MC-based therapies for this fatal tumor. We also highlight SDC1 as a potential biomarker for incipient NEPC.

2.
Nat Commun ; 13(1): 4767, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35970913

ABSTRACT

Pediatric and adult high-grade gliomas are the most common primary malignant brain tumors, with poor prognosis due to recurrence and tumor infiltration after therapy. Quiescent cells have been implicated in tumor recurrence and treatment resistance, but their direct visualization and targeting remain challenging, precluding their mechanistic study. Here, we identify a population of malignant cells expressing Prominin-1 in a non-proliferating state in pediatric high-grade glioma patients. Using a genetic tool to visualize and ablate quiescent cells in mouse brain cancer and human cancer organoids, we reveal their localization at both the core and the edge of the tumors, and we demonstrate that quiescent cells are involved in infiltration of brain cancer cells. Finally, we find that Harmine, a DYRK1A/B inhibitor, partially decreases the number of quiescent and infiltrating cancer cells. Our data point to a subpopulation of quiescent cells as partially responsible of tumor invasiveness, one of the major causes of brain cancer morbidity.


Subject(s)
Brain Neoplasms , Glioma , Adult , Animals , Brain/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Division , Child , Glioma/genetics , Glioma/pathology , Humans , Mice , Neoplasm Invasiveness
3.
EMBO Rep ; 23(9): e55299, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35796299

ABSTRACT

Lifespan is determined by complex and tangled mechanisms that are largely unknown. The early postnatal stage has been proposed to play a role in lifespan, but its contribution is still controversial. Here, we show that a short rapamycin treatment during early life can prolong lifespan in Mus musculus and Drosophila melanogaster. Notably, the same treatment at later time points has no effect on lifespan, suggesting that a specific time window is involved in lifespan regulation. We also find that sulfotransferases are upregulated during early rapamycin treatment both in newborn mice and in Drosophila larvae, and transient dST1 overexpression in Drosophila larvae extends lifespan. Our findings unveil a novel link between early-life treatments and long-term effects on lifespan.


Subject(s)
Drosophila Proteins , Longevity , Aging/physiology , Animals , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Longevity/physiology , Mice , Sirolimus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...