Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsyst Nanoeng ; 10: 28, 2024.
Article in English | MEDLINE | ID: mdl-38405129

ABSTRACT

Grayscale structured surfaces with nanometer-scale features are used in a growing number of applications in optics and fluidics. Thermal scanning probe lithography achieves a lateral resolution below 10 nm and a vertical resolution below 1 nm, but its maximum depth in polymers is limited. Here, we present an innovative combination of nanowriting in thermal resist and plasma dry etching with substrate cooling, which achieves up to 10-fold amplification of polymer nanopatterns into SiO2 without proportionally increasing surface roughness. Sinusoidal nanopatterns in SiO2 with 400 nm pitch and 150 nm depth are fabricated free of shape distortion after dry etching. To exemplify the possible applications of the proposed method, grayscale dielectric nanostructures are used for scalable manufacturing through nanoimprint lithography and for strain nanoengineering of 2D materials. Such a method for aspect ratio amplification and smooth grayscale nanopatterning has the potential to find application in the fabrication of photonic and nanoelectronic devices.

2.
Adv Sci (Weinh) ; 11(12): e2303518, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38234204

ABSTRACT

Silk fibroin (SF) is a natural material with polymorphic structures that determine its water solubility and biodegradability, which can be altered by exposing it to heat. Here, a hybrid thermal lithography method combining scalable microscale laser-based patterning with nanoscale patterning based on thermal scanning probe lithography is developed. The latter enables in addition grayscale patterns to be made. The resolution limit of the writing in silk fibroin is studied by using a nanoscale heat source from a scanned nanoprobe. The heat thereby induces local water solubility change in the film, which can subsequently be developed in deionized water. Nanopatterns and grayscale patterns down to 50 nm lateral resolution are successfully written in the silk fibroin that behaves like a positive tone resist. The resulting patterned silk fibroin is then applied as a mask for dry etching of SiO2 to form a hard mask for further nano-processing. A very high selectivity of 42:1 between SiO2 and silk fibroin is obtained allowing for high-aspect ratio structure to be fabricated. The fabricated nanostructures have very low line edge roughness of 5 ± 2 nm. The results demonstrate the potential of silk fibroin as a water-soluble resist for hybrid thermal lithography and precise micro/nanofabrication.


Subject(s)
Fibroins , Nanostructures , Fibroins/chemistry , Water/chemistry , Silicon Dioxide , Nanostructures/chemistry , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...