Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 753, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902349

ABSTRACT

Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs) and is involved in various cellular processes, including cancer development. PRMT2 expression is increased in several cancer types although its role in acute myeloid leukemia (AML) remains unknown. Here, we investigate the role of PRMT2 in a cohort of patients with AML, PRMT2 knockout AML cell lines as well as a Prmt2 knockout mouse model. In patients, low PRMT2 expressors are enriched for inflammatory signatures, including the NF-κB pathway, and show inferior survival. In keeping with a role for PRMT2 in control of inflammatory signaling, bone marrow-derived macrophages from Prmt2 KO mice display increased pro-inflammatory cytokine signaling upon LPS treatment. In PRMT2-depleted AML cell lines, aberrant inflammatory signaling has been linked to overproduction of IL6, resulting from a deregulation of the NF-κB signaling pathway, therefore leading to hyperactivation of STAT3. Together, these findings identify PRMT2 as a key regulator of inflammation in AML.


Subject(s)
Inflammation , Leukemia, Myeloid, Acute , Mice, Knockout , NF-kappa B , Protein-Arginine N-Methyltransferases , Signal Transduction , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Inflammation/metabolism , Inflammation/genetics , Intracellular Signaling Peptides and Proteins , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice, Inbred C57BL , NF-kappa B/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
2.
Small Methods ; 7(7): e2300069, 2023 07.
Article in English | MEDLINE | ID: mdl-37156748

ABSTRACT

Viral-mediated delivery of the CRISPR-Cas9 system is one the most commonly used techniques to modify the genome of a cell, with the aim of analyzing the function of the targeted gene product. While these approaches are rather straightforward for membrane-bound proteins, they can be laborious for intracellular proteins, given that selection of full knockout (KO) cells often requires the amplification of single-cell clones. Moreover, viral-mediated delivery systems, besides the Cas9 and gRNA, lead to the integration of unwanted genetic material, such as antibiotic resistance genes, introducing experimental biases. Here, an alternative non-viral delivery approach is presented for CRISPR/Cas9, allowing efficient and flexible selection of KO polyclonal cells. This all-in-one mammalian CRISPR-Cas9 expression vector, ptARgenOM, encodes the gRNA and the Cas9 linked to a ribosomal skipping peptide sequence followed by the enhanced green fluorescent protein and the puromycin N-acetyltransferase, allowing for transient, expression-dependent selection and enrichment of isogenic KO cells. After evaluation using more than 12 distinct targets in 6 cell lines, ptARgenOM is found to be efficient in producing KO cells, reducing the time required to obtain a polyclonal isogenic cell line by 4-6 folds. Altogether ptARgenOM provides a simple, fast, and cost-effective delivery tool for genome editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Cell Line , Mammals/genetics
3.
Biomedicines ; 10(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36551854

ABSTRACT

The human genome is composed of unique DNA sequences that encode proteins and unique sequence noncoding RNAs that are essential for normal development and cellular differentiation. The human genome also contains over 50% of genome sequences that are repeat in nature (tandem and interspersed repeats) that are now known to contribute dynamically to genetic diversity in populations, to be transcriptionally active under certain physiological conditions, and to be aberrantly active in disease states including cancer, where consequences are pleiotropic with impact on cancer cell phenotypes and on the tumor immune microenvironment. Repeat element-derived RNAs play unique roles in exogenous and endogenous cell signaling under normal and disease conditions. A key component of repeat element-derived transcript-dependent signaling occurs via triggering of innate immune receptor signaling that then feeds forward to inflammatory responses through interferon and NFκB signaling. It has recently been shown that cancer cells display abnormal transcriptional activity of repeat elements and that this is linked to either aggressive disease and treatment failure or to improved prognosis/treatment response, depending on cell context and the amplitude of the so-called 'viral mimicry' response that is engaged. 'Viral mimicry' refers to a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons and other repeat elements. In this paper, the literature regarding transcriptional activation of repeat elements and engagement of inflammatory signaling in normal (focusing on hematopoiesis) and cancer is reviewed with an emphasis on the role of innate immune receptor signaling, in particular by dsRNA receptors of the RIG-1 like receptor family and interferons/NFκB. How repeat element-derived RNA reprograms cell identity through RNA-guided chromatin state modulation is also discussed.

4.
Cancers (Basel) ; 14(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36358861

ABSTRACT

Arginine methylation is a common post-translational modification affecting protein activity and the transcription of target genes when methylation occurs on histone tails. There are nine protein arginine methyltransferases (PRMTs) in mammals, divided into subgroups depending on the methylation they form on a molecule of arginine. During the formation and maturation of the different types of blood cells, PRMTs play a central role by controlling cell differentiation at the transcriptional level. PRMT enzymatic activity is necessary for many cellular processes in hematological malignancies, such as the activation of cell cycle and proliferation, inhibition of apoptosis, DNA repair processes, RNA splicing, and transcription by methylating histone tails' arginine. Chemical tools have been developed to inhibit the activity of PRMTs and have been tested in several models of hematological malignancies, including primary samples from patients, xenografts into immunodeficient mice, mouse models, and human cell lines. They show a significant effect by reducing cell viability and increasing the overall survival of mice. PRMT5 inhibitors have a strong therapeutic potential, as phase I clinical trials in hematological malignancies that use these molecules show promising results, thus, underlining PRMT inhibitors as useful therapeutic tools for cancer treatment in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...