Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Res Natl Inst Stand Technol ; 117: 176-84, 2012.
Article in English | MEDLINE | ID: mdl-26900522

ABSTRACT

It has become common practice to automate data acquisition from programmable instrumentation, and a range of different software solutions fulfill this task. Many routine measurements require sequential processing of certain tasks, for instance to adjust the temperature of a sample stage, take a measurement, and repeat that cycle for other temperatures. This paper introduces an open-source Java program that processes a series of text-based commands that define the measurement sequence. These commands are in an intuitive format which provides great flexibility and allows quick and easy adaptation to various measurement needs. For each of these commands, the iC-framework calls a corresponding Java method that addresses the specified instrument to perform the desired task. The functionality of iC can be extended with minimal programming effort in Java or Python, and new measurement equipment can be addressed by defining new commands in a text file without any programming.

2.
Nat Mater ; 7(4): 321-5, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18297079

ABSTRACT

Central to the operation of organic electronic and optoelectronic devices is the transport of charge and energy in the organic semiconductor, and to understand the nature and dynamics of charge carriers is at the focus of intense research efforts. As a basic transport property of solids, the Seebeck coefficient S provides deep insight as it is given by the entropy transported by thermally excited charge carriers and involves in the simplest case only electronic contributions where the transported entropy is determined by details of the band structure and scattering events. We have succeeded for the first time to measure the temperature- and carrier-density-dependent thermopower in single crystals and thin films of two prototypical organic semiconductors by a controlled modulation of the chemical potential in a field-effect geometry. Surprisingly, we find the Seebeck coefficient to be well within the range of the electronic contribution in conventional inorganic semiconductors, highlighting the similarity of transport mechanisms in organic and inorganic semiconductors. Charge and entropy transport is best described as band-like transport of quasiparticles that are subjected to scattering, with exponentially distributed in-gap trap states, and without further contributions to S.

SELECTION OF CITATIONS
SEARCH DETAIL
...