Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 104(3-2): 039904, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654215

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevE.90.042919.

2.
Phys Rev E ; 94(4-1): 042210, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841493

ABSTRACT

We explore identical Rössler systems organized into two equally sized groups, among which differing positive and negative in- and out-coupling strengths are allowed. With this asymmetric coupling, we analyze patterns in the phase dynamics that coexist with chaotic amplitudes. We specifically investigate traveling phase waves where the oscillators settle on a new rhythm different from their own. We show that these waves are possible even without coherence in the phase angles. It is further demonstrated that the emergence of these incoherent traveling waves depends on the type of coupling, not on the individual dynamics of the Rössler systems. Together with the study of noise effects, our results suggest a promising new avenue toward the interplay of chaotic, noisy, coherent, and incoherent collective dynamics.

3.
Article in English | MEDLINE | ID: mdl-26465531

ABSTRACT

In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.

4.
Article in English | MEDLINE | ID: mdl-26172775

ABSTRACT

We study two intertwined globally coupled networks of noisy Kuramoto phase oscillators that have the same natural frequency but differ in their perception of the mean field and their contribution to it. Such a give-and-take mechanism is given by asymmetric in- and out-coupling strengths which can be both positive and negative. We uncover in this minimal network of networks intriguing patterns of discordance, where the ensemble splits into two clusters separated by a constant phase lag. If it differs from π, then traveling wave solutions emerge. We observe a second route to traveling waves via traditional one-cluster states. Bistability is found between the various collective states. Analytical results and bifurcation diagrams are derived with a reduced system.


Subject(s)
Models, Theoretical , Time Factors
5.
Article in English | MEDLINE | ID: mdl-26066210

ABSTRACT

In this paper we analyze the second-order Kuramoto model in the presence of a positive correlation between the heterogeneity of the connections and the natural frequencies in scale-free networks. We numerically show that discontinuous transitions emerge not just in disassortative but also in strongly assortative networks, in contrast with the first-order model. We also find that the effect of assortativity on network synchronization can be compensated by adjusting the phase damping. Our results show that it is possible to control collective behavior of damped Kuramoto oscillators by tuning the network structure or by adjusting the dissipation related to the phases' movement.


Subject(s)
Models, Theoretical
6.
Article in English | MEDLINE | ID: mdl-25871069

ABSTRACT

By the use of extensive numerical simulations, we show that the nearest-neighbor energy-level spacing distribution P(s) and the entropic eigenfunction localization length of the adjacency matrices of Erdos-Rényi (ER) fully random networks are universal for fixed average degree ξ≡αN (α and N being the average network connectivity and the network size, respectively). We also demonstrate that the Brody distribution characterizes well P(s) in the transition from α=0, when the vertices in the network are isolated, to α=1, when the network is fully connected. Moreover, we explore the validity of our findings when relaxing the randomness of our network model and show that, in contrast to standard ER networks, ER networks with diagonal disorder also show universality. Finally, we also discuss the spectral and eigenfunction properties of small-world networks.

7.
Article in English | MEDLINE | ID: mdl-25375579

ABSTRACT

The Shannon entropy of a time series is a standard measure to assess the complexity of a dynamical process and can be used to quantify transitions between different dynamical regimes. An alternative way of quantifying complexity is based on state recurrences, such as those available in recurrence quantification analysis. Although varying definitions for recurrence-based entropies have been suggested so far, for some cases they reveal inconsistent results. Here we suggest a method based on weighted recurrence plots and show that the associated Shannon entropy is positively correlated with the largest Lyapunov exponent. We demonstrate the potential on a prototypical example as well as on experimental data of a chemical experiment.

8.
Phys Rev Lett ; 110(21): 218701, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23745940

ABSTRACT

The emergence of explosive synchronization has been reported as an abrupt transition in complex networks of first-order Kuramoto oscillators. In this Letter we demonstrate that the nodes in a second-order Kuramoto model perform a cascade of transitions toward a synchronous macroscopic state, which is a novel phenomenon that we call cluster explosive synchronization. We provide a rigorous analytical treatment using a mean-field analysis in uncorrelated networks. Our findings are in good agreement with numerical simulations and fundamentally deepen the understanding of microscopic mechanisms toward synchronization.


Subject(s)
Models, Theoretical , Cluster Analysis , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...