Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Psychoneuroendocrinology ; 147: 105974, 2023 01.
Article in English | MEDLINE | ID: mdl-36403510

ABSTRACT

During maze navigation rats can rely on hippocampus-mediated place memory or striatum-mediated response memory. Ovarian hormones bias whether females use place or response memory to reach a reward. Here, we investigated the impact of the contraceptive hormones, ethinyl estradiol (EE) and levonorgestrel (LNG), on memory bias. A total of 63 gonadally-intact female rats were treated with either 10 µg/kg of EE alone, 20 µg/kg of LNG alone, both 10 µg/kg of EE and 20 µg/kg of LNG together, or a sesame oil injection with 5% ethanol as a vehicle control. Rats in the control condition were tested during the diestrus phase of the estrous cycle in order to control for the low circulating levels of gonadotropin and ovarian hormones that occur with oral contraceptive administration. Rats treated with LNG alone had a bias towards the use of place memory compared to diestrus phase control rats. This bias was not observed if LNG was administered in combination with EE. Rats treated with EE or EE+LNG did not have a statistically significant difference in memory bias compared to rats in the control group. These data show that synthetic hormones contained in oral contraceptives administered to females influence which cognitive strategy is predominantly used during navigation.


Subject(s)
Ethinyl Estradiol , Levonorgestrel , Female , Rats , Animals , Humans , Levonorgestrel/pharmacology , Ethinyl Estradiol/pharmacology , Contraceptives, Oral , Estrous Cycle , Control Groups
2.
Horm Behav ; 140: 105137, 2022 04.
Article in English | MEDLINE | ID: mdl-35158200

ABSTRACT

17ß-Estradiol (E2) and progesterone (P) influence place and response memory in female rats in spatial navigation tasks. Use of these memory systems is associated with the hippocampus and the dorsal striatum, respectively. Injections of E2 result in a well-established bias to use place memory, while much less is understood about the role of P. A total of 120 ovariectomized female rats were tested within a dual-solution T-maze task and treated with either low E2 (n = 24), high E2 (10 µg/kg; n = 24), or high E2 in combination with P (500 µg/kg) at three time points before testing: 15 min (n = 24), 1 h (n = 24), and 4 h (n = 24). Given alone, high E2 biases rats to the use of place memory, but this effect is reversed when P is given 1 h or 4 h before testing. This indicates that P may be playing an inhibitory role in the hippocampus during spatial tasks, which is consistent with past findings. Our findings show that P acts rapidly (within an hour) to affect performance during spatial tasks.


Subject(s)
Progesterone , Spatial Navigation , Animals , Estradiol/pharmacology , Female , Hippocampus , Maze Learning , Memory , Progesterone/pharmacology , Rats , Spatial Memory
SELECTION OF CITATIONS
SEARCH DETAIL
...