Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 90(12): 123104, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31893785

ABSTRACT

The combination of inelastic electron tunneling spectroscopy (IETS), also used for IET spectrum based on scanning tunneling microscopy with atomic force microscopy (AFM) enables us to measure the vibrational energies of a single molecule along with the force exerted by the tip of a microscope, which deepens our understanding on the interaction between the tip and the molecule on a surface. The resolution of IETS is a crucial factor in determining the vibrational energies of a molecule. However, radio frequency (RF) noise from the environment significantly deteriorates the resolution. We introduce an RF noise filtering technique, which enables high resolution IETS while maintaining uncompromised AFM performance, demonstrated by vibrational measurements of a CO molecule on a copper surface.

2.
Proc Natl Acad Sci U S A ; 115(18): 4571-4576, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29666274

ABSTRACT

The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation.

3.
J Chem Phys ; 146(22): 224707, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-29166071

ABSTRACT

The adsorption energy of carbon monoxide on Ni ad-islands and ultra-thin films grown on the Cu(110) surface can be finely tuned via a complex interplay among diffusion, site change mechanisms, and coverage effects. The observed features of CO desorption can be explained in terms of migration of CO molecules from Cu to Ni islands, competition between bridge and on-top adsorption sites, and repulsive lateral adsorbate-adsorbate interactions. While the CO adsorption energy on clean Cu(110) is of the order of 0.5 eV, Ni-alloying allows for its controlled, continuous tunability in the 0.98-1.15 eV range with Ni coverage. Since CO is a fundamental reactant and intermediate in many heterogeneous catalytic (electro)-conversion reactions, insight into these aspects with atomic level detail provides useful information to potentially drive applicative developments. The tunability range of the CO adsorption energy that we measure is compatible with the already observed tuning of conversion rates by Ni doping of Cu single crystal catalysts for methanol synthesis from a CO2, CO, and H2 stream under ambient pressure conditions.

4.
J Am Chem Soc ; 134(40): 16827-33, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22989103

ABSTRACT

Achieving control of the nanoscale structure of binary alloys is of paramount importance for the design of novel materials with specific properties, leading to, for example, improved reaction rates and selectivity in catalysis, tailored magnetic behavior in electronics, and controlled growth of nanostructured materials such as graphene. By means of a combined experimental and theoretical approach, we show that the complex self-diffusion mechanisms determining these key properties can be mostly defined by kinetic rather than energetic effects. We explain how in the Ni-Cu system nanoscale control of self-diffusion and segregation processes close to the surface can be achieved by finely tuning the relative concentration of the alloy constituents. This allows tailoring the material functionality and provides a clear explanation of previously observed effects involved, for example, in the growth of graphene films and in the catalytic reduction of carbon dioxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...