Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
2.
PLoS One ; 17(8): e0273198, 2022.
Article in English | MEDLINE | ID: mdl-35981051

ABSTRACT

The ribosomal protein uL11 is located at the basis of the ribosome P-stalk and plays a paramount role in translational efficiency. In addition, no mutant for uL11 is available suggesting that this gene is haplo-insufficient as many other Ribosomal Protein Genes (RPGs). We have previously shown that overexpression of Drosophila melanogaster uL11 enhances the transcription of many RPGs and Ribosomal Biogenesis genes (RiBis) suggesting that uL11 might globally regulate the level of translation through its transcriptional activity. Moreover, uL11 trimethylated on lysine 3 (uL11K3me3) interacts with the chromodomain of the Enhancer of Polycomb and Trithorax Corto, and both proteins co-localize with RNA Polymerase II at many sites on polytene chromosomes. These data have led to the hypothesis that the N-terminal end of uL11, and more particularly the trimethylation of lysine 3, supports the extra-ribosomal activity of uL11 in transcription. To address this question, we mutated the lysine 3 codon using a CRISPR/Cas9 strategy and obtained several lysine 3 mutants. We describe here the first mutants of D. melanogaster uL11. Unexpectedly, the uL11K3A mutant, in which the lysine 3 codon is replaced by an alanine, displays a genuine Minute phenotype known to be characteristic of RPG deletions (longer development, low fertility, high lethality, thin and short bristles) whereas the uL11K3Y mutant, in which the lysine 3 codon is replaced by a tyrosine, is unaffected. In agreement, the rate of translation decreases in uL11K3A but not in uL11K3Y. Co-immunoprecipitation experiments show that the interaction between uL11 and the Corto chromodomain is impaired by both mutations. However, Histone Association Assays indicate that the mutant proteins still bind chromatin. RNA-seq analyses from wing imaginal discs show that Corto represses RPG expression whereas very few genes are deregulated in uL11 mutants. We propose that Corto, by repressing RPG expression, ensures that all ribosomal proteins are present at the correct stoichiometry, and that uL11 fine-tunes its transcriptional regulation of RPGs.


Subject(s)
Drosophila Proteins , Lysine , Ribosomal Proteins , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Lysine/genetics , Lysine/metabolism , Mutation , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Transcriptional Activation/genetics
3.
Insects ; 12(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34680653

ABSTRACT

Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment.

4.
PLoS Genet ; 14(8): e1007573, 2018 08.
Article in English | MEDLINE | ID: mdl-30067846

ABSTRACT

Drosophila body pigmentation has emerged as a major Evo-Devo model. Using two Drosophila melanogaster lines, Dark and Pale, selected from a natural population, we analyse here the interaction between genetic variation and environmental factors to produce this complex trait. Indeed, pigmentation varies with genotype in natural populations and is sensitive to temperature during development. We demonstrate that the bric à brac (bab) genes, that are differentially expressed between the two lines and whose expression levels vary with temperature, participate in the pigmentation difference between the Dark and Pale lines. The two lines differ in a bab regulatory sequence, the dimorphic element (called here bDE). Both bDE alleles are temperature-sensitive, but the activity of the bDE allele from the Dark line is lower than that of the bDE allele from the Pale line. Our results suggest that this difference could partly be due to differential regulation by AbdB. bab has been previously reported to be a repressor of abdominal pigmentation. We show here that one of its targets in this process is the pigmentation gene tan (t), regulated via the tan abdominal enhancer (t_MSE). Furthermore, t expression is strongly modulated by temperature in the two lines. Thus, temperature sensitivity of t expression is at least partly a consequence of bab thermal transcriptional plasticity. We therefore propose that a gene regulatory network integrating both genetic variation and temperature sensitivity modulates female abdominal pigmentation. Interestingly, both bDE and t_MSE were previously shown to have been recurrently involved in abdominal pigmentation evolution in drosophilids. We propose that the environmental sensitivity of these enhancers has turned them into evolutionary hotspots.


Subject(s)
DNA-Binding Proteins/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Gene Regulatory Networks , Pigmentation/genetics , Transcription Factors/physiology , Alleles , Animals , Base Sequence , Binding Sites , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/physiology , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Evolution, Molecular , Female , Gene Expression Regulation , Genetic Variation , Genotyping Techniques , Sequence Analysis, DNA , Temperature , Transcription Factors/genetics
5.
PLoS Genet ; 14(7): e1007498, 2018 07.
Article in English | MEDLINE | ID: mdl-29995890

ABSTRACT

In Drosophila, ubiquitous expression of a short Cyclin G isoform generates extreme developmental noise estimated by fluctuating asymmetry (FA), providing a model to tackle developmental stability. This transcriptional cyclin interacts with chromatin regulators of the Enhancer of Trithorax and Polycomb (ETP) and Polycomb families. This led us to investigate the importance of these interactions in developmental stability. Deregulation of Cyclin G highlights an organ intrinsic control of developmental noise, linked to the ETP-interacting domain, and enhanced by mutations in genes encoding members of the Polycomb Repressive complexes PRC1 and PR-DUB. Deep-sequencing of wing imaginal discs deregulating CycG reveals that high developmental noise correlates with up-regulation of genes involved in translation and down-regulation of genes involved in energy production. Most Cyclin G direct transcriptional targets are also direct targets of PRC1 and RNAPolII in the developing wing. Altogether, our results suggest that Cyclin G, PRC1 and PR-DUB cooperate for developmental stability.


Subject(s)
Cyclin G/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Gene Expression Regulation, Developmental , Polycomb Repressive Complex 1/metabolism , Animals , Animals, Genetically Modified , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/metabolism , Cyclin G/genetics , Down-Regulation , Drosophila Proteins/genetics , Female , Gene Regulatory Networks/physiology , Male , Polycomb Repressive Complex 1/genetics , Protein Binding/genetics , Up-Regulation , Wings, Animal/embryology
6.
Sci Rep ; 8(1): 5328, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29593305

ABSTRACT

In their seminal paper published in 1979, Gould and Lewontin argued that some traits arise as by-products of the development of other structures and not for direct utility in themselves. We show here that this applies to the trident, a pigmentation pattern observed on the thorax of Drosophila melanogaster. Using reporter constructs, we show that the expression domain of several genes encoding pigmentation enzymes follows the trident shape. This domain is complementary to the expression pattern of stripe (sr), which encodes an essential transcription factor specifying flight muscle attachment sites. We demonstrate that sr limits the expression of these pigmentation enzyme genes to the trident by repressing them in its own expression domain, i.e. at the flight muscle attachment sites. We give evidence that repression of not only yellow but also other pigmentation genes, notably tan, is involved in the trident shape. The flight muscle attachment sites and sr expression patterns are remarkably conserved in dipterans reflecting the essential role of sr. Our data suggest that the trident is a by-product of flight muscle attachment site patterning that arose when sr was co-opted for the regulation of pigmentation enzyme coding genes.


Subject(s)
Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Muscle Development , Animals , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Female , Gene Expression Regulation, Developmental , Melanins/biosynthesis , Muscle, Skeletal/embryology , Muscle, Skeletal/metabolism , Pigmentation/genetics , Transcription Factors/metabolism
7.
Sci Rep ; 8(1): 538, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323201

ABSTRACT

The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify the key method parameters (notably the multi-resolution) and report results with respect to human ground truths and existing methods. Our method achieves recognition performances competitive with current existing approaches while being generic and fast. The algorithms are integrated in the open-source Cytomine software and we provide parameter configuration guidelines so that they can be easily exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future research.


Subject(s)
Body Weights and Measures/methods , Image Processing, Computer-Assisted/methods , Algorithms , Animals , Body Weights and Measures/standards , Drosophila , Humans , Software , Zebrafish
8.
Genome Biol ; 18(1): 126, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28673357

ABSTRACT

BACKGROUND: The mapping resolution of genome-wide association studies (GWAS) is limited by historic recombination events and effects are often assigned to haplotype blocks rather than individual SNPs. It is not clear how many of the SNPs in the block, and which ones, are causative. Drosophila pigmentation is a powerful model to dissect the genetic basis of intra-specific and inter-specific phenotypic variation. Three tightly linked SNPs in the t-MSE enhancer have been identified in three D. melanogaster populations as major contributors to female abdominal pigmentation. This enhancer controls the expression of the pigmentation gene tan (t) in the abdominal epidermis. Two of the three SNPs were confirmed in an independent study using the D. melanogaster Genetic Reference Panel established from a North American population. RESULTS: We determined the functional impact of SNP1, SNP2, and SNP3 using transgenic lines to test all possible haplotypes in vivo. We show that all three candidate SNPs contribute to female Drosophila abdominal pigmentation. Interestingly, only two SNPs agree with the effect predicted by GWAS; the third one goes in the opposite direction because of linkage disequilibrium between multiple functional SNPs. Our experimental design uncovered strong additive effects for the three SNPs, but we also found significant epistatic effects explaining up to 11% of the total variation. CONCLUSIONS: Our results suggest that linked causal variants are important for the interpretation of GWAS and functional validation is needed to understand the genetic architecture of traits.


Subject(s)
Drosophila/genetics , Epistasis, Genetic , Genetic Linkage , Genome-Wide Association Study , Pigmentation/genetics , Polymorphism, Single Nucleotide , Animals , Animals, Genetically Modified , Female , Genes, Insect , Quantitative Trait Loci
9.
Sci Rep ; 7: 43370, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230190

ABSTRACT

Phenotypic plasticity describes the ability of a given genotype to produce distinct phenotypes in different environments. We use the temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females as a model to analyse the effect of the environment on development. We reported previously that thermal plasticity of abdominal pigmentation in females involves the pigmentation gene tan (t). However, the expression of the pigmentation gene yellow (y) was also modulated by temperature in the abdominal epidermis of pharate females. We investigate here the contribution of y to female abdominal pigmentation plasticity. First, we show that y is required for the production of black Dopamine-melanin. Then, using in situ hybridization, we show that the expression of y is strongly modulated by temperature in the abdominal epidermis of pharate females but not in bristles. Interestingly, these two expression patterns are known to be controlled by distinct enhancers. However, the activity of the y-wing-body epidermal enhancer only partially mediates the effect of temperature suggesting that additional regulatory sequences are involved. In addition, we show that y and t co-expression is needed to induce strong black pigmentation indicating that y contributes to female abdominal pigmentation plasticity.


Subject(s)
Drosophila Proteins/biosynthesis , Drosophila melanogaster/physiology , Gene Expression Regulation/radiation effects , Pigmentation , Adaptation, Physiological , Animals , Drosophila melanogaster/radiation effects , Environmental Exposure , Female , Temperature
10.
PLoS Genet ; 12(8): e1006218, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27508387

ABSTRACT

Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to environmental conditions might therefore give more substrate for selection, explaining why this gene has frequently been involved in evolution of pigmentation.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene-Environment Interaction , Selection, Genetic/genetics , Animals , Chromatin/genetics , Drosophila Proteins/biosynthesis , Drosophila melanogaster/physiology , Female , Gene Expression Regulation , Genotype , Histone-Lysine N-Methyltransferase/genetics , Melanins/biosynthesis , Phenotype , Pigmentation/genetics , Promoter Regions, Genetic , Temperature
11.
Article in English | MEDLINE | ID: mdl-25995770

ABSTRACT

BACKGROUND: Cyclins and cyclin-dependent kinases (CDKs) are essential for cell cycle regulation and are functionally associated with proteins involved in epigenetic maintenance of transcriptional patterns in various developmental or cellular contexts. Epigenetic maintenance of transcription patterns, notably of Hox genes, requires the conserved Polycomb-group (PcG), Trithorax-group (TrxG), and Enhancer of Trithorax and Polycomb (ETP) proteins, particularly well studied in Drosophila. These proteins form large multimeric complexes that bind chromatin and appose or recognize histone post-translational modifications. PcG genes act as repressors, counteracted by trxG genes that maintain gene activation, while ETPs interact with both, behaving alternatively as repressors or activators. Drosophila Cyclin G negatively regulates cell growth and cell cycle progression, binds and co-localizes with the ETP Corto on chromatin, and participates with Corto in Abdominal-B Hox gene regulation. Here, we address further implications of Cyclin G in epigenetic maintenance of gene expression. RESULTS: We show that Cyclin G physically interacts and extensively co-localizes on chromatin with the conserved ETP Additional sex combs (ASX), belonging to the repressive PR-DUB complex that participates in H2A deubiquitination and Hox gene silencing. Furthermore, Cyclin G mainly co-localizes with RNA polymerase II phosphorylated on serine 2 that is specific to productive transcription. CycG interacts with Asx, PcG, and trxG genes in Hox gene maintenance, and behaves as a PcG gene. These interactions correlate with modified ectopic Hox protein domains in imaginal discs, consistent with a role for Cyclin G in PcG-mediated Hox gene repression. CONCLUSIONS: We show here that Drosophila CycG is a Polycomb-group gene enhancer, acting in epigenetic maintenance of the Hox genes Sex combs reduced (Scr) and Ultrabithorax (Ubx). However, our data suggest that Cyclin G acts alternatively as a transcriptional activator or repressor depending on the developmental stage, the tissue or the target gene. Interestingly, since Cyclin G interacts with several CDKs, Cyclin G binding to the ETPs ASX or Corto suggests that their activity could depend on Cyclin G-mediated phosphorylation. We discuss whether Cyclin G fine-tunes transcription by controlling H2A ubiquitination and transcriptional elongation via interaction with the ASX subunit of PR-DUB.

12.
PLoS One ; 8(10): e77592, 2013.
Article in English | MEDLINE | ID: mdl-24204884

ABSTRACT

Drosophila wings mainly consist of two cell types, vein and intervein cells. Acquisition of either fate depends on specific expression of genes that are controlled by several signaling pathways. The nuclear mechanisms that translate signaling into regulation of gene expression are not completely understood, but they involve chromatin factors from the Trithorax (TrxG) and Enhancers of Trithorax and Polycomb (ETP) families. One of these is the ETP Corto that participates in intervein fate through interaction with the Drosophila EGF Receptor--MAP kinase ERK pathway. Precise mechanisms and molecular targets of Corto in this process are not known. We show here that Corto interacts with the Elongin transcription elongation complex. This complex, that consists of three subunits (Elongin A, B, C), increases RNA polymerase II elongation rate in vitro by suppressing transient pausing. Analysis of phenotypes induced by EloA, B, or C deregulation as well as genetic interactions suggest that the Elongin complex might participate in vein vs intervein specification, and antagonizes corto as well as several TrxG genes in this process. Chromatin immunoprecipitation experiments indicate that Elongin C and Corto bind the vein-promoting gene rhomboid in wing imaginal discs. We propose that Corto and the Elongin complex participate together in vein vs intervein fate, possibly through tissue-specific transcriptional regulation of rhomboid.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Transcription Factors/metabolism , Veins/metabolism , Wings, Animal/metabolism , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/genetics , DNA-Binding Proteins/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Elongin , Gene Expression/genetics , Gene Expression Regulation/genetics , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription Factors/genetics
13.
Fly (Austin) ; 7(2): 70-7, 2013.
Article in English | MEDLINE | ID: mdl-23519089

ABSTRACT

What are the sources of phenotypic variation and which factors shape this variation are fundamental questions of developmental and evolutionary biology. Despite this simple formulation and intense research, controversy remains. Three points are particularly discussed: (1) whether adaptive developmental mechanisms buffering variation exist at all; (2) if yes, do they involve specific genes and processes, i.e., different from those involved in the development of the traits that are buffered?; and (3) whether different mechanisms specifically buffer the various sources of variation, i.e., genetic, environmental and stochastic, or whether a generalist process buffers them all at once. We advocate that experimental work integrating different levels of analysis will improve our understanding of the origin of phenotypic variation and thus help answering these contentious questions. In this paper, we first survey the current views on these issues, highlighting potential sources of controversy. We then focus on the stochastic part of phenotypic variation, as measured by fluctuating asymmetry, and on current knowledge about the genetic basis of developmental stability. We report our recent discovery that an individual gene, Cyclin G, plays a central role-adaptive or not-in developmental stability in Drosophila. ( 1) We discuss the implications of this discovery on the regulation of organ size and shape, and finally point out open questions.


Subject(s)
Drosophila/growth & development , Animals , Asymmetric Cell Division , Cyclin G/genetics , Cyclin G/metabolism , Cyclin G/physiology , Drosophila/anatomy & histology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Organ Size/genetics , Phenotype , Stochastic Processes
14.
PLoS One ; 7(11): e49958, 2012.
Article in English | MEDLINE | ID: mdl-23185495

ABSTRACT

The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8-10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches.


Subject(s)
DNA-Binding Proteins , Drosophila Proteins , Nuclear Proteins , Stem Cell Niche/genetics , Transcription Factors , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , Gene Dosage/genetics , Gene Expression Regulation, Developmental , Germ Cells/cytology , Germ Cells/growth & development , Homeostasis/genetics , Homeostasis/physiology , Morphogenesis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Ovary/cytology , Ovary/growth & development , Stem Cell Niche/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
15.
PLoS Genet ; 8(10): e1003006, 2012.
Article in English | MEDLINE | ID: mdl-23071455

ABSTRACT

Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA-seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Regulation , Polycomb Repressive Complex 1/metabolism , Ribosomal Proteins/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Chromatin/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Gene Expression , Gene Expression Profiling , Genome-Wide Association Study , HSP70 Heat-Shock Proteins/genetics , Lysine/metabolism , Methylation , Molecular Sequence Data , Phenotype , Polytene Chromosomes/genetics , Polytene Chromosomes/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Sequence Alignment , Transcription, Genetic , Transcriptome
16.
Epigenetics Chromatin ; 5(1): 12, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22870894

ABSTRACT

BACKGROUND: Gene-environment interactions are mediated by epigenetic mechanisms. Polycomb Group proteins constitute part of an epigenetic cellular transcriptional memory system that is subject to dynamic modulation during differentiation. Molecular insight in processes that control dynamic chromatin association and dissociation of Polycomb repressive complexes during and beyond development is limited. We recently showed that MK3 interacts with Polycomb repressive complex 1 (PRC1). The functional relevance of this interaction, however, remained poorly understood. MK3 is activated downstream of mitogen- and stress-activated protein kinases (M/SAPKs), all of which fulfill crucial roles during development. We here use activation of the immediate-early response gene ATF3, a bona fide PRC1 target gene, as a model to study how MK3 and its effector kinases MAPK/ERK and SAPK/P38 are involved in regulation of PRC1-dependent ATF3 transcription. RESULTS: Our current data show that mitogenic signaling through ERK, P38 and MK3 regulates ATF3 expression by PRC1/chromatin dissociation and epigenetic modulation. Mitogenic stimulation results in transient P38-dependent H3S28 phosphorylation and ERK-driven PRC1/chromatin dissociation at PRC1 targets. H3S28 phosphorylation by itself appears not sufficient to induce PRC1/chromatin dissociation, nor ATF3 transcription, as inhibition of MEK/ERK signaling blocks BMI1/chromatin dissociation and ATF3 expression, despite induced H3S28 phosphorylation. In addition, we establish that concomitant loss of local H3K27me3 promoter marking is not required for ATF3 activation. We identify pERK as a novel signaling-induced binding partner of PRC1, and provide evidence that MK3 controls ATF3 expression in cultured cells via negative regulatory feedback on M/SAPKs. Dramatically increased ectopic wing vein formation in the absence of Drosophila MK in a Drosophila ERK gain-of-function wing vein patterning model, supports the existence of MK-mediated negative feedback regulation on pERK. CONCLUSION: We here identify and characterize important actors in a PRC1-dependent epigenetic signal/response mechanism, some of which appear to be nonspecific global responses, whereas others provide modular specificity. Our findings provide novel insight into a Polycomb-mediated epigenetic mechanism that dynamically controls gene transcription and support a direct link between PRC1 and cellular responses to changes in the microenvironment.

17.
PLoS Genet ; 7(10): e1002314, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21998598

ABSTRACT

Morphological consistency in metazoans is remarkable given the pervasive occurrence of genetic variation, environmental effects, and developmental noise. Developmental stability, the ability to reduce developmental noise, is a fundamental property of multicellular organisms, yet its genetic bases remains elusive. Imperfect bilateral symmetry, or fluctuating asymmetry, is commonly used to estimate developmental stability. We observed that Drosophila melanogaster overexpressing Cyclin G (CycG) exhibit wing asymmetry clearly detectable by sight. Quantification of wing size and shape using geometric morphometrics reveals that this asymmetry is a genuine-but extreme-fluctuating asymmetry. Overexpression of CycG indeed leads to a 40-fold increase of wing fluctuating asymmetry, which is an unprecedented effect, for any organ and in any animal model, either in wild populations or mutants. This asymmetry effect is not restricted to wings, since femur length is affected as well. Inactivating CycG by RNAi also induces fluctuating asymmetry but to a lesser extent. Investigating the cellular bases of the phenotypic effects of CycG deregulation, we found that misregulation of cell size is predominant in asymmetric flies. In particular, the tight negative correlation between cell size and cell number observed in wild-type flies is impaired when CycG is upregulated. Our results highlight the role of CycG in the control of developmental stability in D. melanogaster. Furthermore, they show that wing developmental stability is normally ensured via compensatory processes between cell growth and cell proliferation. We discuss the possible role of CycG as a hub in a genetic network that controls developmental stability.


Subject(s)
Cyclin G/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/growth & development , Wings, Animal/growth & development , Animals , Base Sequence , Body Patterning/genetics , Cyclin G/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Regulatory Networks , Genetic Variation , Genotype , Molecular Sequence Data , Phenotype , RNA Interference , Wings, Animal/anatomy & histology
18.
BMC Dev Biol ; 11: 17, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21401930

ABSTRACT

BACKGROUND: Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. RESULTS: Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. CONCLUSIONS: Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/growth & development , Extracellular Signal-Regulated MAP Kinases/metabolism , Wings, Animal/growth & development , Animals , Blotting, Western , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Cell Differentiation , Chromatin/genetics , Drosophila/embryology , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/genetics , Gene Expression Regulation, Developmental , In Situ Hybridization , MAP Kinase Signaling System , Phosphorylation , Polymerase Chain Reaction , Polytene Chromosomes/metabolism , Wings, Animal/cytology , Wings, Animal/embryology , Wings, Animal/metabolism
19.
Cell Cycle ; 10(5): 805-18, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21311225

ABSTRACT

Mammalian Cyclins G1 and G2 are unconventional cyclins whose role in regulating the cell cycle is ambiguous. Cyclin G1 promotes G2/M cell cycle arrest in response to DNA damage whereas ectopic expression of CCNG2, that encodes Cyclin G2, induces G1/S cell cycle arrest. The only Drosophila Cyclin G was previously shown to be a transcriptional regulator that interacts with the chromatin factor Corto and controls expression of the homeotic gene Abdominal B. It is very close to mammalian Cyclin G1 and G2 except in its N-terminal region, that interacts with Corto, and that seems to have been acquired in dipterans. Ubiquitous misregulation of Cyclin G (CycG) using transgenic lines lengthens development and induces phenotypes suggesting growth or proliferation defects. Using tissue-specific misregulation of CycG and FACS, we show that overproduction of Cyclin G produces small cells whereas shortage produces large cells, suggesting that Cyclin G negatively regulates cell growth. Furthermore, overexpression of CycG lengthens the cell cycle, with a prominent effect on G1 and S phases. Genetic interactions with Cyclin E suggest that Cyclin G prevents G1 to S transition and delays S phase progression. Control of cell growth and cell cycle by Cyclin G might be achieved via interaction with a network of partners, notably the cyclin-dependent kinases CDK4 and CDK2.


Subject(s)
Cyclin G/metabolism , Drosophila melanogaster/metabolism , Amino Acid Sequence , Animals , Cell Proliferation , Cell Size , Cyclin G/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/metabolism , Female , G1 Phase , Male , Molecular Sequence Data , Phenotype , RNA Interference , RNA, Small Interfering/metabolism , S Phase , Sequence Alignment
20.
Adv Exp Med Biol ; 689: 41-62, 2010.
Article in English | MEDLINE | ID: mdl-20795321

ABSTRACT

Once established, homeotic gene (Hox) expression is maintained in the original pattern by Polycomb-group (PcG) and trithorax-group (trxG) proteins therefore named maintenance proteins (MPs). PcG and trxG proteins maintain silencing and activation of Hox and many other genes, respectively. We provide here a brief overview of genetics and molecular biology of these proteins and of a third class of proteins termed Enhancers of Trithorax and Polycomb (ETP) that are required for both maintenance of silencing and activation of Hox genes. We examine the recruitment of MPs onto maintenance elements (MEs), their role in the regulation of transcription and the epigenetic marks that could provide maintenance. Lastly, we discuss two important roles of PcG proteins in replication of DNA and stem cell renewal and maintenance.


Subject(s)
Gene Expression Regulation, Developmental , Genes, Homeobox , Animals , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epigenesis, Genetic , Gene Silencing , Humans , Polycomb-Group Proteins , Repressor Proteins/genetics , Repressor Proteins/metabolism , Response Elements , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...