Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Int J Parasitol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992783

ABSTRACT

Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.

2.
Exp Appl Acarol ; 92(3): 307, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592577
3.
Sci Rep ; 13(1): 18980, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923779

ABSTRACT

Microorganisms present in mosquitoes and their interactions are key factors affecting insect development. Among them, Wolbachia is closely associated with the host and affects several fitness parameters. In this study, the bacterial and fungal microbiota from two laboratory Culex quinquefasciatus isolines (wild type and tetracycline-cured) were characterized by metagenome amplicon sequencing of the ITS2 and 16S rRNA genes at different developmental stages and feeding conditions. We identified 572 bacterial and 61 fungal OTUs. Both isolines presented variable bacterial communities and different trends in the distribution of diversity among the groups. The lowest bacterial richness was detected in sugar-fed adults of the cured isoline, whereas fungal richness was highly reduced in blood-fed mosquitoes. Beta diversity analysis indicated that isolines are an important factor in the differentiation of mosquito bacterial communities. Considering composition, Penicillium was the dominant fungal genus, whereas Wolbachia dominance was inversely related to that of Enterobacteria (mainly Thorsellia and Serratia). This study provides a more complete overview of the mosquito microbiome, emphasizing specific highly abundant components that should be considered in microorganism manipulation approaches to control vector-borne diseases.


Subject(s)
Aedes , Culex , Microbiota , Wolbachia , Animals , Aedes/genetics , Bacteria/genetics , Culex/genetics , Mosquito Vectors/microbiology , RNA, Ribosomal, 16S/genetics , Wolbachia/genetics
4.
Mol Biol Evol ; 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35724423

ABSTRACT

Most humans carry mites in the hair follicles of their skin for their entire lives. Follicular mites are the only metazoans tha continuously live on humans. We propose that Demodex folliculorum (Acari) represents a transitional stage from a host-injuring obligate parasite to an obligate symbiont. Here, we describe the profound impact of this transition on the genome and physiology of the mite. Genome sequencing revealed that the permanent host association of D. folliculorum led to an extensive genome reduction through relaxed selection and genetic drift, resulting in the smallest number of protein-coding genes yet identified among panarthropods. Confocal microscopy revealed that this gene loss coincided with an extreme reduction in the number of cells. Single uninucleate muscle cells are sufficient to operate each of the three segments that form each walking leg. While it has been assumed that the reduction of the cell number in parasites starts early in development, we identified a greater total number of cells in the last developmental stage (nymph) than in the terminal adult stage, suggesting that reduction starts at the adult or ultimate stage of development. This is the first evolutionary step in an arthropod species adopting a reductive, parasitic or endosymbiotic lifestyle. Somatic nuclei show underreplication at the diploid stage. Novel eye structures or photoreceptors as well as a unique human host melatonin-guided day/night rhythm are proposed for the first time. The loss of DNA repair genes coupled with extreme endogamy might have set this mite species on an evolutionary dead-end trajectory.

5.
Exp Appl Acarol ; 86(4): 517-534, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35357605

ABSTRACT

Manure-inhabiting Mesostigmata mites are important biological control agents of pest flies. However, the biodiversity of this mite community is mainly known from Europe and America, and especially from cattle manure. This study examined the diversity and abundance of Mesostigmata mites associated with various types of manure in an (intensive) agricultural region of the Middle East, i.e., the city Ahvaz and its suburbs, in southwest Iran. Mite samples were extracted from manure of cattle, buffalo, sheep, horse, poultry and quail in 30 livestock and poultry farms. In total, 40 species belonging to 24 genera and 16 families were identified. The most diverse families were Laelapidae with eight species, Macrochelidae with seven and Parasitidae with six. Macrocheles muscaedomesticae and Uroobovella marginata were the most widespread species, recorded in 28 and 27 out of 30 collection sites, respectively. Two species, M. sumbaensis and U. marginata, were found in all studied manures. Simpson's diversity index recorded the highest diversity in buffalo and sheep manure. Real and theoretical species richness (rarefaction curves) were congruent in number of individuals. The presence of seven species of Macrochelidae in the manure confirms that these are important predators of the house fly for the region of Ahvaz and its suburbs. Members of the Parasitidae were highly prevalent, with one species known as a specialized predator of house fly eggs. This work aims to encourage further studies on the diversity of Mesostigmata in these agricultural settings, and further continue assessing the feasibility of these mites as effective biocontrol agents of filth flies in different types of manure and from different corners of the world.


Subject(s)
Houseflies , Mites , Animals , Cattle , Horses , Humans , Iran , Manure , Poultry , Sheep
6.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-34963129

ABSTRACT

Over the past few decades, there has been a growing demand for genome analysis of ancient human remains. Destructive sampling is increasingly difficult to obtain for ethical reasons, and standard methods of breaking the skull to access the petrous bone or sampling remaining teeth are often forbidden for curatorial reasons. However, most ancient humans carried head lice and their eggs abound in historical hair specimens. Here we show that host DNA is protected by the cement that glues head lice nits to the hair of ancient Argentinian mummies, 1,500-2,000 years old. The genetic affinities deciphered from genome-wide analyses of this DNA inform that this population migrated from north-west Amazonia to the Andes of central-west Argentina; a result confirmed using the mitochondria of the host lice. The cement preserves ancient environmental DNA of the skin, including the earliest recorded case of Merkel cell polyomavirus. We found that the percentage of human DNA obtained from nit cement equals human DNA obtained from the tooth, yield 2-fold compared with a petrous bone, and 4-fold to a bloodmeal of adult lice a millennium younger. In metric studies of sheaths, the length of the cement negatively correlates with the age of the specimens, whereas hair linear distance between nit and scalp informs about the environmental conditions at the time before death. Ectoparasitic lice sheaths can offer an alternative, nondestructive source of high-quality ancient DNA from a variety of host taxa where bones and teeth are not available and reveal complementary details of their history.


Subject(s)
DNA, Environmental , Pediculus , Animals , Genome, Human , Genome-Wide Association Study , Humans , Infant, Newborn , Pediculus/genetics , Skull
7.
J Forensic Sci ; 67(2): 605-618, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34651318

ABSTRACT

Burial of a cadaver results in a slower decomposition rate, due to more stable below-ground temperatures and restricted access to necrophagous insects. In such circumstances, analysis of the soil mesofauna, with emphasis on mites (Acari) may be more valuable in time-of-death estimations. The production of volatile organic compounds of cadaveric decay results in changes, especially in the soil pH, which in turn would affect the abundance and diversity of the associated mites. In general, the effects of decomposition and the consequently altered pH levels on the abundance of mites in shallow graves, as well as the effects of fluctuating above-ground environmental parameters (temperature, relative humidity, and precipitation) remain unknown. Here, we found that the decay of three pig cadavers buried in shallow graves (<30 cm below) caused a significant increase in the soil pH throughout decomposition, from neutral to alkaline. Cadaver decay attracted an abundance of mites: with 300 mites collected from the three pig cadavers compared to 129 from the control soil samples at the same depth. Mites rapidly became more abundant in cadaver-associated soils than in control soils after the fresh stage. Increasing soil pH had a positive impact on the abundance of mites in graves and there was a significant interaction between cadaver body temperature and soil pH. Above-ground fluctuations in temperature, relative humidity, and precipitation were found to have no significant direct effect on mite abundance in grave or control soils.


Subject(s)
Mites , Soil , Animals , Burial , Cadaver , Humans , Insecta , Postmortem Changes , Soil/chemistry , Swine
8.
Nature ; 600(7889): 450-455, 2021 12.
Article in English | MEDLINE | ID: mdl-34912089

ABSTRACT

Early to Middle Miocene sea-level oscillations of approximately 40-60 m estimated from far-field records1-3 are interpreted to reflect the loss of virtually all East Antarctic ice during peak warmth2. This contrasts with ice-sheet model experiments suggesting most terrestrial ice in East Antarctica was retained even during the warmest intervals of the Middle Miocene4,5. Data and model outputs can be reconciled if a large West Antarctic Ice Sheet (WAIS) existed and expanded across most of the outer continental shelf during the Early Miocene, accounting for maximum ice-sheet volumes. Here we provide the earliest geological evidence proving large WAIS expansions occurred during the Early Miocene (~17.72-17.40 Ma). Geochemical and petrographic data show glacimarine sediments recovered at International Ocean Discovery Program (IODP) Site U1521 in the central Ross Sea derive from West Antarctica, requiring the presence of a WAIS covering most of the Ross Sea continental shelf. Seismic, lithological and palynological data reveal the intermittent proximity of grounded ice to Site U1521. The erosion rate calculated from this sediment package greatly exceeds the long-term mean, implying rapid erosion of West Antarctica. This interval therefore captures a key step in the genesis of a marine-based WAIS and a tipping point in Antarctic ice-sheet evolution.


Subject(s)
Ice Cover , Sea Level Rise/history , Seawater/analysis , Antarctic Regions , Climate Models , History, Ancient
9.
Exp Appl Acarol ; 85(2-4): 247-276, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34622362

ABSTRACT

The burial of a cadaver results in reduced arthropod activity and disruptions in colonisation patterns. Here, the distribution and diversity of mite taxa was studied across decomposition stages of shallowly buried pig carcasses (Sus scrofa domesticus). In total 300 mites (88 species) were collected from three pig shallow graves compared to 129 mites (46 species) from control (bare) soil samples at the same depth. A successional pattern of Acari higher taxa and families was observed, and species richness and biodiversity fluctuated throughout decomposition, whereas active decay showed the greatest biodiversity. Mesostigmata mites were the most abundant in 'cadaver soils' with a significant difference in the abundance of Parasitidae mites, whereas Oribatida mites (true soil mites) were the most abundant in control soils. Certain mite species were significantly associated with decay stages: Cornigamasus lunaris with 'bloated', Gamasodes spiniger with 'active', Eugamasus sp. and Lorryia reticulata with 'advanced', and Macrocheles matrius and Ramusella clavipectinata in 'dry'. Scheloribates laevigatus was a marker of bare soil at a shallow depth and Vulgoramasus remberti of buried decomposition, not specific to any decay stage. Analysis of mite assemblages associated with head, torso and posterior body showed that Parasitus evertsi and M. matrius are attracted to beneath the thighs, whereas L. reticulata to beneath the head. This study highlights the value of mites as indicator species of decomposition and its stages, confirming (1) a succession of Acari on buried remains and (2) species specificity to body regions.


Subject(s)
Mites , Animals , Biodiversity , Burial , Cadaver , Soil
10.
Sci Rep ; 11(1): 1094, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441735

ABSTRACT

In an attempt to evaluate the susceptibility of the mosquito Culex quinquefasciatus to bacterial agents, a population naturally infected with a Wolbachia pipientis wPipSJ native strain was tested against the action of three bacterial mosquitocides, Bacillus thuringiensis subsp. israelensis, Bacillus wiedmannii biovar thuringiensis and Lysinibacillus sphaericus. Tests were carried out on mosquito larvae with and without Wolbachia (controls). Cx. quinquefasciatus naturally infected with the native wPipSJ strain proved to be more resistant to the pathogenic action of the three mosquitocidal bacterial strains. Additionally, wPipSJ was fully characterised using metagenome-assembled genomics, PCR-RFLP (PCR-Restriction Fragment Length Polymorphism) and MLST (MultiLocus Sequence Typing) analyses. This Wolbachia strain wPipSJ belongs to haplotype I, group wPip-III and supergroup B, clustering with other mosquito wPip strains, such as wPip PEL, wPip JHB, wPip Mol, and wAlbB; showing the southernmost distribution in America. The cytoplasmic incompatibility phenotype of this strain was revealed via crosses between wildtype (Wolbachia+) and antibiotic treated mosquito populations. The results of the tests with the bacterial agents suggest that Cx. quinquefasciatus naturally infected with wPipSJ is less susceptible to the pathogenic action of mosquitocidal bacterial strains when compared with the antibiotic-treated mosquito isoline, and is more susceptible to B. thuringiensis subsp. israelensis than to the other two mosquitocidal agents.


Subject(s)
Culex/microbiology , Pest Control, Biological , Wolbachia/physiology , Animals , Culex/physiology , Female , Host-Pathogen Interactions , Male
11.
Sci Rep ; 10(1): 18441, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33116256

ABSTRACT

The brown marmorated stink bug Halyomorpha halys (Stål) is a globally invasive species that harbours the primary bacterial symbiont 'Candidatus Pantoea carbekii'. In this work, P. carbekii was used as another genetic marker to investigate the biodiversity and biogeographical patterns of this important pest, in native and newly invaded areas, especially in Italy. The correlation between the genetic structure of the symbiont and that of its host was studied through the analyses of one bacterial and one host marker, the putative pseudogene ΔybgF and the mitochondrial gene COI, respectively. As a result, five new P. carbekii haplotypes were identified, and an association pattern between host-symbiont haplotypes was observed. Host species showed higher haplotype diversity than symbiont, which can be expected in a long term host-symbiont association. Populations from the north-eastern Italy showed the highest values of genetic diversity for both markers, highlighting that this particular Italian area could be the result of multiple ongoing introductions. Moreover, some of the symbiont-host haplotypes observed were shared only by populations from north-eastern Italy and native areas, especially Japan, suggesting further introductions from this native country to Italy. Overall, our findings improve the understanding of the potential origin of multiple accidental introductions of H. halys in Italy.


Subject(s)
Haplotypes , Heteroptera/genetics , Heteroptera/microbiology , Introduced Species , Symbiosis/physiology , Animals , Italy , Pantoea/physiology
12.
Exp Appl Acarol ; 81(3): 389-408, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32638184

ABSTRACT

Microbes associated with the external and internal anatomy of three commercially available predatory mite species-Phytoseiulus persimilis, Typhlodromips (= Amblyseius) swirskii, and Neoseiulus (= Amblyseius) cucumeris-were examined using light microscopy, confocal laser scanning microscopy and fluorescence in-situ hybridization (FISH). Four microbe morphotypes were observed on external body regions. These included three microfungi-like organisms (named T1, T2 and T3) and rod-shaped bacteria (T4). Morphotypes showed unique distributions on the external body regions and certain microbes were found only on one host species. Microfungi-like T1 were present in all three species whereas T2 and T3 were present in only P. persimilis and T. swirskii, respectively. T1 and T2 microbes were most abundant on the ventral structures of the idiosoma and legs, most frequently associated with coxae, coxal folds, ventrianal shields and epigynal shields. T3 microbes were most abundant on legs and dorsal idiosoma. T4 microbes were less abundant and were attached to epigynal shields of N. cucumeris and T. swirskii. Significant differences in distribution between batches suggest temporal fluctuations in the microbiota of phytoseiids in mass-reared systems. FISH showed bacteria within the alimentary tract, in Malpighian tubules and anal atria. These may aid absorption of excretory products or maintaining gut physiology. We suggest a mechanism by which microbes may be transmitted to offspring and throughout populations. This study aims to improve our knowledge of this poorly understood area and highlights the necessity of understanding the microbiota of Acari.


Subject(s)
Microbiota , Mites , Animals , Bacteria , Mites/microbiology , Pest Control, Biological , Predatory Behavior
13.
J Forensic Sci ; 65(6): 2174-2183, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32717143

ABSTRACT

This report interprets the presence of mite species in three clandestine graves in Europe, evaluating their potential use as trace evidence or markers. Grave 1 (Sweden): Two mite species Rhizoglyphus robini Claparède, 1869 and Parasitus loricatus (Wankel, 1861) were recovered from the surface of a body buried in a shallow grave in an area surrounded by trees, in close vicinity to house gardens. Grave 2 (Germany): Phoretic deutonymphs of Gamasodes spiniger (Trägårdh, 1910) were attached to an adult fly (Diptera: Sphaeroceridae) found within a shallow grave containing two human bodies covered in soil and dung. Grave 3 (France): P. loricatus were recovered from the soil around a body buried in a deep grave (80 cm under). In graves 1 and 3 both corpses were undergoing advanced decay and skeletization, the locations match with the subterranean habit of P. loricatus, highlighting the value of this species as a marker of graves or burials in soil and during late decomposition. R. robini is a soil mite that feeds on decayed roots and bulbs; this mite species confirms the location of the corpse within top soil, agreeing with a more specific type of superficial burial, a shallow grave. In case 2, the presence of both coprophiles, the mite G. spiniger and the carrier fly confirm association of remains with dung or animal feces. The three mite species are reported for the first time in human graves. There are no previous records of R. robini from Sweden.


Subject(s)
Burial , Forensic Entomology/methods , Mites , Animals , Cadaver , Diptera , Germany , Humans , Postmortem Changes , Soil , Sweden
14.
Acta Parasitol ; 65(2): 541-545, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31960216

ABSTRACT

PURPOSE: Knowledge on ticks infesting humans is scarce for the middle East. In this work, tick specimens (Acari: Amblyommidae) infesting humans in Lebanon were identified. METHODS: Ticks that were found on humans were received in the Lebanese University, Faculty of Sciences. The specimens were preserved in alcohol for their further morphological identification. RESULTS: Three tick species were identified: a red sheep tick Haemaphysalis punctata Canestrini et Fanzago, 1878, a Mediterranean ear tick H. parva (Neumann, 1897), and an ornate sheep tick Dermacentor marginatus (Sulzer, 1776); all isolated from human hosts. CONCLUSION: This is the first report of Haemaphysalis punctata, H. parva and Dermacentor marginatus infesting humans from Central and North Lebanon.


Subject(s)
Ixodidae/physiology , Tick Infestations/parasitology , Adult , Animals , Child , Dermacentor/anatomy & histology , Dermacentor/physiology , Female , Humans , Ixodidae/anatomy & histology , Lebanon , Male
15.
Parasitology ; 146(5): 678-684, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30526723

ABSTRACT

Despite the common association of human lice with abandoned or neglected people, no procedure to assess pediculosis, aimed to detect signs of neglect, exists. Investigating the two most common forms of head louse infestation, regular and severe, we define lice-markers of neglect and develop a protocol and survey form to record and assess pediculosis. The study of head lice from a deceased victim of neglect helped unravel time-length since death, frequency of exposure to neglect and the cause and circumstances related to the death. Nit-clusters are markers of neglect, indicating length and frequency of neglect episodes. In the case study used here that culminated in the death of the victim, sustained abandonment started circa 2 years before discovery. The lice suggested that death was caused by overconsumption of a powerful calcium channel blocker, an antihypertensive, an excess of which in lice food supply (blood) stops oogenesis. Despite hosting thousands of adult females on the hair, lice reproduction stopped and nits were no longer developed or deposited on the hairs at the root end. This short distance of the shaft with no nits provided a time estimation of overdosing of almost 2 months before death.

16.
Exp Appl Acarol ; 76(4): 453-471, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30443696

ABSTRACT

The biology of macrochelid mites might offer new venues for the interpretation of the environmental conditions surrounding human death and decomposition. Three human corpses, one from Sweden and two from Spain, have been analysed for the occurrence of Macrochelidae species. Macrocheles muscaedomesticae (Scopoli) females were associated with a corpse that was found in a popular beach area of southeast Spain. Their arrival coincides with the occurrence of one of their major carrier species, the filth fly Fannia scalaris, the activity of which peaks during mid-summer. Macrocheles glaber (Müller) specimens were collected from a corpse in a shallow grave in a forest in Sweden at the end of summer, concurrent with the arrival of beetles attracted by odours from the corpse. Macrocheles perglaber Filipponi and Pegazzano adults were sampled from a corpse found indoors in the rural surroundings of Granada city, south Spain. The phoretic behaviour of this species is similar to that of M. glaber, but it is more specific to Scarabaeidae and Geotrupidae dung beetles, most of which favour human faeces. Macrocheles muscaedomesticae is known from urban and rural areas and poultry farms, M. glaber from outdoors, particularly the countryside, whereas M. perglaber is known from outdoor, rural, and remote, potentially mountainous locations. Macrocheles muscaedomesticae and M. perglaber are reported for the first time from the Iberian Peninsula. This is the first record of M. perglaber from human remains.


Subject(s)
Animal Distribution , Cadaver , Coleoptera/physiology , Mites/physiology , Muscidae/physiology , Symbiosis , Animals , Female , Forensic Sciences , Humans , Spain , Sweden
17.
Forensic Sci Int ; 292: e25-e30, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30340894

ABSTRACT

This study reports for the first time the use of soil micro-invertebrates, mites, as trace evidence to localise buried objects such as money. The case relates to a crime in Germany, where a large sum of banknotes had been hidden in an unknown location, likely abroad. In 2016, part of the money (approx. €500,000 in €500 value notes) was confiscated by the police. After analysis in the forensic lab, it was discovered that the notes were covered with small particles of a sort of debris, later identified as specimens of Rhizoglyphus howensis Manson, a non-European, nor Mediterranean species of root or bulb mites (Acaridae: Rhizoglyphinae). The restricted biogeographic distribution of R. howensis, originated in unspoiled forest soil in the Australasian region, limited the search for the money to the areas visited by the perpetrators during their trips to the region. Rhizoglyphus howensis biology provided further clues on the whereabouts of the banknotes, as they are specialist plant feeders, exclusively feeding on seeds of palm trees and on roots of Quercus patula in the Australasian region. This report aims to highlight the importance of the correct identification of the microscopic organisms associated with a crime scene and the immediate retrieval of micro-invertebrate trace evidence. This is the first record of R. howensis from Europe, and from banknotes.


Subject(s)
Biology , Forensic Sciences/methods , Mites , Soil/parasitology , Animals , Crime , Feeding Behavior , Germany , Quercus , Trees
18.
Sci Rep ; 8(1): 25, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311698

ABSTRACT

Criminal investigations of suspected murder cases require estimating the post-mortem interval (PMI, or time after death) which is challenging for long PMIs. Here we present the case of human remains found in a Swiss forest. We have used a multidisciplinary approach involving the analysis of bones and soil samples collected beneath the remains of the head, upper and lower body and "control" samples taken a few meters away. We analysed soil chemical characteristics, mites and nematodes (by microscopy) and micro-eukaryotes (by Illumina high throughput sequencing). The PMI estimate on hair 14C-data via bomb peak radiocarbon dating gave a time range of 1 to 3 years before the discovery of the remains. Cluster analyses for soil chemical constituents, nematodes, mites and micro-eukaryotes revealed two clusters 1) head and upper body and 2) lower body and controls. From mite evidence, we conclude that the body was probably brought to the site after death. However, chemical analyses, nematode community analyses and the analyses of micro-eukaryotes indicate that decomposition took place at least partly on site. This study illustrates the usefulness of combining several lines of evidence for the study of homicide cases to better calibrate PMI inference tools.


Subject(s)
Bone and Bones/chemistry , Homicide , Mites , Nematoda , Soil Microbiology , Soil/chemistry , Adolescent , Adult , Animals , Humans , Postmortem Changes , Young Adult
19.
Sci Rep ; 8(1): 1317, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343787

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

20.
Int J Food Microbiol ; 255: 17-24, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28558330

ABSTRACT

Spray-drying of lactic cultures provides direct-to-vat starters, which facilitate their commercialization and use. However, this process may alter the metabolic activity and deteriorate technological features. In this work, we assessed the influence of spray-drying on the survival and aroma production of two strains of mesophilic lactobacilli: Lactobacillus paracasei 90 and Lactobacillus plantarum 91, which have already been characterized as good adjunct cultures. The spray-drying was carried out using a laboratory scale spray and the dried cultures were monitored during the storage for the survival rate. The dried cultures were applied to two cheese models: sterile cheese extract and miniature soft cheese. The influence on the carbohydrate metabolism and the production of organic acids and volatile compounds was determined. Both strains retained high levels of viable counts in the powder after drying and during the storage at 5°C for twelve months. In addition, they also remained at high level in both cheese models during incubation or ripening. Similar profiles of carbohydrate fermentation and bioformation of volatile compounds were observed in the cheese extracts for each of the strains when tested as both fresh and dried cultures. In addition, the ability of Lb. paracasei 90 to increase the production of acetoin and diacetyl remarkably in cheese models was also confirmed for the spray-dried culture.


Subject(s)
Cheese/microbiology , Desiccation , Food Handling/methods , Food Handling/standards , Food Microbiology , Lactobacillus plantarum/physiology , Lactobacillus/physiology , Acetoin/metabolism , Carbohydrate Metabolism , Cheese/standards , Diacetyl/metabolism , Fermentation , Lactobacillus/metabolism , Lactobacillus plantarum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...