Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Epidemics ; 47: 100757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493708

ABSTRACT

The Scenario Modeling Hub (SMH) initiative provides projections of potential epidemic scenarios in the United States (US) by using a multi-model approach. Our contribution to the SMH is generated by a multiscale model that combines the global epidemic metapopulation modeling approach (GLEAM) with a local epidemic and mobility model of the US (LEAM-US), first introduced here. The LEAM-US model consists of 3142 subpopulations each representing a single county across the 50 US states and the District of Columbia, enabling us to project state and national trajectories of COVID-19 cases, hospitalizations, and deaths under different epidemic scenarios. The model is age-structured, and multi-strain. It integrates data on vaccine administration, human mobility, and non-pharmaceutical interventions. The model contributed to all 17 rounds of the SMH, and allows for the mechanistic characterization of the spatio-temporal heterogeneities observed during the COVID-19 pandemic. Here we describe the mathematical and computational structure of our model, and present the results concerning the emergence of the SARS-CoV-2 Alpha variant (lineage designation B.1.1.7) as a case study. Our findings show considerable spatial and temporal heterogeneity in the introduction and diffusion of the Alpha variant, both at the level of individual states and combined statistical areas, as it competes against the ancestral lineage. We discuss the key factors driving the time required for the Alpha variant to rise to dominance within a population, and quantify the impact that the emergence of the Alpha variant had on the effective reproduction number at the state level. Overall, we show that our multiscale modeling approach is able to capture the complexity and heterogeneity of the COVID-19 pandemic response in the US.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Humans , United States/epidemiology , Pandemics , Epidemiological Models
2.
J Med Internet Res ; 25: e47563, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37906219

ABSTRACT

BACKGROUND: During the initial phases of the vaccination campaign worldwide, nonpharmaceutical interventions (NPIs) remained pivotal in the fight against the COVID-19 pandemic. In this context, it is important to understand how the arrival of vaccines affected the adoption of NPIs. Indeed, some individuals might have seen the start of mass vaccination campaigns as the end of the emergency and, as a result, relaxed their COVID-safe behaviors, facilitating the spread of the virus in a delicate epidemic phase such as the initial rollout. OBJECTIVE: The aim of this study was to collect information about the possible relaxation of protective behaviors following key events of the vaccination campaign in four countries and to analyze possible associations of these behavioral tendencies with the sociodemographic characteristics of participants. METHODS: We developed an online survey named "COVID-19 Prevention and Behavior Survey" that was conducted between November 26 and December 22, 2021. Participants were recruited using targeted ads on Facebook in four different countries: Brazil, Italy, South Africa, and the United Kingdom. We measured the onset of relaxation of protective measures in response to key events of the vaccination campaign, namely personal vaccination and vaccination of the most vulnerable population. Through calculation of odds ratios (ORs) and regression analysis, we assessed the strength of association between compliance with NPIs and sociodemographic characteristics of participants. RESULTS: We received 2263 questionnaires from the four countries. Participants reported the most significant changes in social activities such as going to a restaurant or the cinema and visiting relatives and friends. This is in good agreement with validated psychological models of health-related behavioral change such as the Health Belief Model, according to which activities with higher costs and perceived barriers (eg, social activities) are more prone to early relaxation. Multivariate analysis using a generalized linear model showed that the two main determinants of the drop of social NPIs were (1) having previously tested positive for COVID-19 (after the second vaccine dose: OR 2.46, 95% CI 1.73-3.49) and (2) living with people at risk (after the second vaccine dose: OR 1.57, 95% CI 1.22-2.03). CONCLUSIONS: This work shows that particular caution has to be taken during vaccination campaigns. Indeed, people might relax their safe behaviors regardless of the dynamics of the epidemic. For this reason, it is crucial to maintain high compliance with NPIs to avoid hindering the beneficial effects of the vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/therapeutic use , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Social Behavior
3.
EPJ Data Sci ; 12(1): 18, 2023.
Article in English | MEDLINE | ID: mdl-37305560

ABSTRACT

Adherence to the non-pharmaceutical interventions (NPIs) put in place to mitigate the spreading of infectious diseases is a multifaceted problem. Several factors, including socio-demographic and socio-economic attributes, can influence the perceived susceptibility and risk which are known to affect behavior. Furthermore, the adoption of NPIs is dependent upon the barriers, real or perceived, associated with their implementation. Here, we study the determinants of NPIs adherence during the first wave of the COVID-19 Pandemic in Colombia, Ecuador, and El Salvador. Analyses are performed at the level of municipalities and include socio-economic, socio-demographic, and epidemiological indicators. Furthermore, by leveraging a unique dataset comprising tens of millions of internet Speedtest® measurements from Ookla®, we investigate the quality of the digital infrastructure as a possible barrier to adoption. We use mobility changes provided by Meta as a proxy of adherence to NPIs and find a significant correlation between mobility drops and digital infrastructure quality. The relationship remains significant after controlling for several factors. This finding suggests that municipalities with better internet connectivity were able to afford higher mobility reductions. We also find that mobility reductions were more pronounced in larger, denser, and wealthier municipalities. Supplementary Information: The online version contains supplementary material available at 10.1140/epjds/s13688-023-00395-5.

4.
Nat Commun ; 14(1): 3272, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37277329

ABSTRACT

Access to COVID-19 vaccines on the global scale has been drastically hindered by structural socio-economic disparities. Here, we develop a data-driven, age-stratified epidemic model to evaluate the effects of COVID-19 vaccine inequities in twenty lower middle and low income countries (LMIC) selected from all WHO regions. We investigate and quantify the potential effects of higher or earlier doses availability. In doing so, we focus on the crucial initial months of vaccine distribution and administration, exploring counterfactual scenarios where we assume the same per capita daily vaccination rate reported in selected high income countries. We estimate that more than 50% of deaths (min-max range: [54-94%]) that occurred in the analyzed countries could have been averted. We further consider scenarios where LMIC had similarly early access to vaccine doses as high income countries. Even without increasing the number of doses, we estimate an important fraction of deaths (min-max range: [6-50%]) could have been averted. In the absence of the availability of high-income countries, the model suggests that additional non-pharmaceutical interventions inducing a considerable relative decrease of transmissibility (min-max range: [15-70%]) would have been required to offset the lack of vaccines. Overall, our results quantify the negative impacts of vaccine inequities and underscore the need for intensified global efforts devoted to provide faster access to vaccine programs in low and lower-middle-income countries.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Income
5.
IEEE Trans Cybern ; 53(12): 7686-7698, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36054390

ABSTRACT

Understanding the feedback loop that links the spatiotemporal spread of infectious diseases and human behavior is an open problem. To study this problem, we develop a multiplex framework that couples epidemic spreading across subpopulations in a metapopulation network (i.e., physical layer) with the spreading of awareness about the epidemic in a communication network (i.e., virtual layer). We explicitly study the interactions between the mobility patterns across subpopulations and the awareness propagation among individuals. We analyze the coupled dynamics using microscopic Markov chains (MMCs) equations and validate the theoretical results via Monte Carlo (MC) simulations. We find that with the spreading of awareness, reducing human mobility becomes more effective in mitigating the large-scale epidemic. We also investigate the influence of varying topological features of the physical and virtual layers and the correlation between the connectivity and local population size per subpopulation. Overall the proposed modeling framework and findings contribute to the growing literature investigating the interplay between the spatiotemporal spread of epidemics and human behavior.


Subject(s)
Communicable Diseases , Epidemics , Humans , Models, Biological , Communicable Diseases/epidemiology , Markov Chains , Monte Carlo Method
6.
medRxiv ; 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36415459

ABSTRACT

Access to COVID-19 vaccines on the global scale has been drastically impacted by structural socio-economic inequities. Here, we develop a data-driven, age-stratified epidemic model to evaluate the effects of COVID-19 vaccine inequities in twenty lower middle and low income countries (LMIC) sampled from all WHO regions. We focus on the first critical months of vaccine distribution and administration, exploring counterfactual scenarios where we assume the same per capita daily vaccination rate reported in selected high income countries. We estimate that, in this high vaccine availability scenario, more than 50% of deaths (min-max range: [56% - 99%]) that occurred in the analyzed countries could have been averted. We further consider a scenario where LMIC had similarly early access to vaccine doses as high income countries; even without increasing the number of doses, we estimate an important fraction of deaths (min-max range: [7% - 73%]) could have been averted. In the absence of equitable allocation, the model suggests that considerable additional non-pharmaceutical interventions would have been required to offset the lack of vaccines (min-max range: [15% - 75%]). Overall, our results quantify the negative impacts of vaccines inequities and call for amplified global efforts to provide better access to vaccine programs in low and lower middle income countries.

8.
PLoS Comput Biol ; 18(5): e1010146, 2022 05.
Article in English | MEDLINE | ID: mdl-35613248

ABSTRACT

We analyze the effectiveness of the first six months of vaccination campaign against SARS-CoV-2 in Italy by using a computational epidemic model which takes into account demographic, mobility, vaccines data, as well as estimates of the introduction and spreading of the more transmissible Alpha variant. We consider six sub-national regions and study the effect of vaccines in terms of number of averted deaths, infections, and reduction in the Infection Fatality Rate (IFR) with respect to counterfactual scenarios with the actual non-pharmaceuticals interventions but no vaccine administration. Furthermore, we compare the effectiveness in counterfactual scenarios with different vaccines allocation strategies and vaccination rates. Our results show that, as of 2021/07/05, vaccines averted 29, 350 (IQR: [16, 454-42, 826]) deaths and 4, 256, 332 (IQR: [1, 675, 564-6, 980, 070]) infections and a new pandemic wave in the country. During the same period, they achieved a -22.2% (IQR: [-31.4%; -13.9%]) IFR reduction. We show that a campaign that would have strictly prioritized age groups at higher risk of dying from COVID-19, besides frontline workers and the fragile population, would have implied additional benefits both in terms of avoided fatalities and reduction in the IFR. Strategies targeting the most active age groups would have prevented a higher number of infections but would have been associated with more deaths. Finally, we study the effects of different vaccination intake scenarios by rescaling the number of available doses in the time period under study to those administered in other countries of reference. The modeling framework can be applied to other countries to provide a mechanistic characterization of vaccination campaigns worldwide.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunization Programs , Italy/epidemiology , SARS-CoV-2 , Vaccination
9.
PNAS Nexus ; 1(4): pgac201, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36714880

ABSTRACT

Online marketplaces are the main engines of legal and illegal e-commerce, yet their empirical properties are poorly understood due to the absence of large-scale data. We analyze two comprehensive datasets containing 245M transactions (16B USD) that took place on online marketplaces between 2010 and 2021, covering 28 dark web marketplaces, i.e. unregulated markets whose main currency is Bitcoin, and 144 product markets of one popular regulated e-commerce platform. We show that transactions in online marketplaces exhibit strikingly similar patterns despite significant differences in language, lifetimes, products, regulation, and technology. Specifically, we find remarkable regularities in the distributions of transaction amounts, number of transactions, interevent times, and time between first and last transactions. We show that buyer behavior is affected by the memory of past interactions and use this insight to propose a model of network formation reproducing our main empirical observations. Our findings have implications for understanding market power on online marketplaces as well as intermarketplace competition, and provide empirical foundation for theoretical economic models of online marketplaces.

10.
Cell ; 184(25): 6010-6014, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34890548

ABSTRACT

The COVID-19 information epidemic, or "infodemic," demonstrates how unlimited access to information may confuse and influence behaviors during a health emergency. However, the study of infodemics is relatively new, and little is known about their relationship with epidemics management. Here, we discuss unresolved issues and propose research directions to enhance preparedness for future health crises.


Subject(s)
COVID-19/psychology , Infodemic , Information Dissemination/ethics , COVID-19/epidemiology , Epidemics/psychology , Humans , Information Dissemination/methods , Public Health , Research/trends , SARS-CoV-2
11.
Nature ; 600(7887): 127-132, 2021 12.
Article in English | MEDLINE | ID: mdl-34695837

ABSTRACT

Considerable uncertainty surrounds the timeline of introductions and onsets of local transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) globally1-7. Although a limited number of SARS-CoV-2 introductions were reported in January and February 2020 (refs.8,9), the narrowness of the initial testing criteria, combined with a slow growth in testing capacity and porous travel screening10, left many countries vulnerable to unmitigated, cryptic transmission. Here we use a global metapopulation epidemic model to provide a mechanistic understanding of the early dispersal of infections and the temporal windows of the introduction of SARS-CoV-2 and onset of local transmission in Europe and the USA. We find that community transmission of SARS-CoV-2 was likely to have been present in several areas of Europe and the USA by January 2020, and estimate that by early March, only 1 to 4 in 100 SARS-CoV-2 infections were detected by surveillance systems. The modelling results highlight international travel as the key driver of the introduction of SARS-CoV-2, with possible introductions and transmission events as early as December 2019 to January 2020. We find a heterogeneous geographic distribution of cumulative infection attack rates by 4 July 2020, ranging from 0.78% to 15.2% across US states and 0.19% to 13.2% in European countries. Our approach complements phylogenetic analyses and other surveillance approaches and provides insights that can be used to design innovative, model-driven surveillance systems that guide enhanced testing and response strategies.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Epidemiological Models , SARS-CoV-2/isolation & purification , Air Travel/statistics & numerical data , COVID-19/mortality , COVID-19/virology , China/epidemiology , Disease Outbreaks/statistics & numerical data , Europe/epidemiology , Humans , Population Density , Time Factors , United States/epidemiology
12.
PLoS Comput Biol ; 17(9): e1009346, 2021 09.
Article in English | MEDLINE | ID: mdl-34506478

ABSTRACT

The promise of efficacious vaccines against SARS-CoV-2 is fulfilled and vaccination campaigns have started worldwide. However, the fight against the pandemic is far from over. Here, we propose an age-structured compartmental model to study the interplay of disease transmission, vaccines rollout, and behavioural dynamics. We investigate, via in-silico simulations, individual and societal behavioural changes, possibly induced by the start of the vaccination campaigns, and manifested as a relaxation in the adoption of non-pharmaceutical interventions. We explore different vaccination rollout speeds, prioritization strategies, vaccine efficacy, as well as multiple behavioural responses. We apply our model to six countries worldwide (Egypt, Peru, Serbia, Ukraine, Canada, and Italy), selected to sample diverse socio-demographic and socio-economic contexts. To isolate the effects of age-structures and contacts patterns from the particular pandemic history of each location, we first study the model considering the same hypothetical initial epidemic scenario in all countries. We then calibrate the model using real epidemiological and mobility data for the different countries. Our findings suggest that early relaxation of safe behaviours can jeopardize the benefits brought by the vaccine in the short term: a fast vaccine distribution and policies aimed at keeping high compliance of individual safe behaviours are key to mitigate disease resurgence.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization Programs , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , COVID-19/transmission , Computational Biology , Health Behavior , Humans , Models, Biological , Pandemics
13.
Phys Rev E ; 104(1-1): 014307, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412322

ABSTRACT

We consider a population that experienced a first wave of infections, interrupted by strong, top-down, governmental restrictions and did not develop a significant immunity to prevent a second wave (i.e., resurgence). As restrictions are lifted, individuals adapt their social behavior to minimize the risk of infection. We explore two scenarios. In the first, individuals reduce their overall social activity towards the rest of the population. In the second scenario, they maintain normal social activity within a small community of peers (i.e., social bubble) while reducing social interactions with the rest of the population. In both cases, we investigate possible correlations between social activity and behavior change, reflecting, for example, the social dimension of certain occupations. We model these scenarios considering a susceptible-infected-recovered epidemic model unfolding on activity-driven networks. Extensive analytical and numerical results show that (i) a minority of very active individuals not changing behavior may nullify the efforts of the large majority of the population and (ii) imperfect social bubbles of normal social activity may be less effective than an overall reduction of social interactions.

14.
medRxiv ; 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33791745

ABSTRACT

Given the narrowness of the initial testing criteria, the SARS-CoV-2 virus spread through cryptic transmission in January and February, setting the stage for the epidemic wave experienced in March and April, 2020. We use a global metapopulation epidemic model to provide a mechanistic understanding of the global dynamic underlying the establishment of the COVID-19 pandemic in Europe and the United States (US). The model is calibrated on international case introductions at the early stage of the pandemic. We find that widespread community transmission of SARS-CoV-2 was likely in several areas of Europe and the US by January 2020, and estimate that by early March, only 1 - 3 in 100 SARS-CoV-2 infections were detected by surveillance systems. Modeling results indicate international travel as the key driver of the introduction of SARS-CoV-2 with possible importation and transmission events as early as December, 2019. We characterize the resulting heterogeneous spatio-temporal spread of SARS-CoV-2 and the burden of the first COVID-19 wave (February-July 2020). We estimate infection attack rates ranging from 0.78%-15.2% in the US and 0.19%-13.2% in Europe. The spatial modeling of SARS-CoV-2 introductions and spreading provides insights into the design of innovative, model-driven surveillance systems and preparedness plans that have a broader initial capacity and indication for testing.

15.
Nat Commun ; 12(1): 2429, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893279

ABSTRACT

We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95-112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals' mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , SARS-CoV-2/isolation & purification , Socioeconomic Factors , Algorithms , COVID-19/epidemiology , COVID-19/virology , Chile/epidemiology , Communicable Disease Control/statistics & numerical data , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Humans , Incidence , Models, Theoretical , Pandemics , SARS-CoV-2/physiology , Time Factors
16.
Phys Rep ; 913: 1-52, 2021 May 23.
Article in English | MEDLINE | ID: mdl-33612922

ABSTRACT

Infectious diseases and human behavior are intertwined. On one side, our movements and interactions are the engines of transmission. On the other, the unfolding of viruses might induce changes to our daily activities. While intuitive, our understanding of such feedback loop is still limited. Before COVID-19 the literature on the subject was mainly theoretical and largely missed validation. The main issue was the lack of empirical data capturing behavioral change induced by diseases. Things have dramatically changed in 2020. Non-pharmaceutical interventions (NPIs) have been the key weapon against the SARS-CoV-2 virus and affected virtually any societal process. Travel bans, events cancellation, social distancing, curfews, and lockdowns have become unfortunately very familiar. The scale of the emergency, the ease of survey as well as crowdsourcing deployment guaranteed by the latest technology, several Data for Good programs developed by tech giants, major mobile phone providers, and other companies have allowed unprecedented access to data describing behavioral changes induced by the pandemic. Here, I review some of the vast literature written on the subject of NPIs during the COVID-19 pandemic. In doing so, I analyze 348 articles written by more than 2518 authors in the first 12 months of the emergency. While the large majority of the sample was obtained by querying PubMed, it includes also a hand-curated list. Considering the focus, and methodology I have classified the sample into seven main categories: epidemic models, surveys, comments/perspectives, papers aiming to quantify the effects of NPIs, reviews, articles using data proxies to measure NPIs, and publicly available datasets describing NPIs. I summarize the methodology, data used, findings of the articles in each category and provide an outlook highlighting future challenges as well as opportunities.

17.
J Med Internet Res ; 22(10): e21597, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32960775

ABSTRACT

BACKGROUND: The exposure and consumption of information during epidemic outbreaks may alter people's risk perception and trigger behavioral changes, which can ultimately affect the evolution of the disease. It is thus of utmost importance to map the dissemination of information by mainstream media outlets and the public response to this information. However, our understanding of this exposure-response dynamic during the COVID-19 pandemic is still limited. OBJECTIVE: The goal of this study is to characterize the media coverage and collective internet response to the COVID-19 pandemic in four countries: Italy, the United Kingdom, the United States, and Canada. METHODS: We collected a heterogeneous data set including 227,768 web-based news articles and 13,448 YouTube videos published by mainstream media outlets, 107,898 user posts and 3,829,309 comments on the social media platform Reddit, and 278,456,892 views of COVID-19-related Wikipedia pages. To analyze the relationship between media coverage, epidemic progression, and users' collective web-based response, we considered a linear regression model that predicts the public response for each country given the amount of news exposure. We also applied topic modelling to the data set using nonnegative matrix factorization. RESULTS: Our results show that public attention, quantified as user activity on Reddit and active searches on Wikipedia pages, is mainly driven by media coverage; meanwhile, this activity declines rapidly while news exposure and COVID-19 incidence remain high. Furthermore, using an unsupervised, dynamic topic modeling approach, we show that while the levels of attention dedicated to different topics by media outlets and internet users are in good accordance, interesting deviations emerge in their temporal patterns. CONCLUSIONS: Overall, our findings offer an additional key to interpret public perception and response to the current global health emergency and raise questions about the effects of attention saturation on people's collective awareness and risk perception and thus on their tendencies toward behavioral change.


Subject(s)
Communication , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Social Media/statistics & numerical data , Adolescent , Adult , Betacoronavirus , COVID-19 , Canada/epidemiology , Disease Outbreaks , Female , Global Health , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , SARS-CoV-2 , United Kingdom/epidemiology , United States/epidemiology , Young Adult
18.
medRxiv ; 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32676609

ABSTRACT

We use a global metapopulation transmission model to study the establishment of sustained and undetected community transmission of the COVID-19 pandemic in the United States. The model is calibrated on international case importations from mainland China and takes into account travel restrictions to and from international destinations. We estimate widespread community transmission of SARS-CoV-2 in February, 2020. Modeling results indicate international travel as the key driver of the introduction of SARS-CoV-2 in the West and East Coast metropolitan areas that could have been seeded as early as late-December, 2019. For most of the continental states the largest contribution of imported infections arrived through domestic travel flows.

19.
PLoS Comput Biol ; 16(5): e1007879, 2020 05.
Article in English | MEDLINE | ID: mdl-32401809

ABSTRACT

In this work, we aim to determine the main factors driving self-initiated behavioral changes during the seasonal flu. To this end, we designed and deployed a questionnaire via Influweb, a Web platform for participatory surveillance in Italy, during the 2017 - 18 and 2018 - 19 seasons. We collected 599 surveys completed by 434 users. The data provide socio-demographic information, level of concerns about the flu, past experience with illnesses, and the type of behavioral changes voluntarily implemented by each participant. We describe each response with a set of features and divide them in three target categories. These describe those that report i) no (26%), ii) only moderately (36%), iii) significant (38%) changes in behaviors. In these settings, we adopt machine learning algorithms to investigate the extent to which target variables can be predicted by looking only at the set of features. Notably, 66% of the samples in the category describing more significant changes in behaviors are correctly classified through Gradient Boosted Trees. Furthermore, we investigate the importance of each feature in the classification task and uncover complex relationships between individuals' characteristics and their attitude towards behavioral change. We find that intensity, recency of past illnesses, perceived susceptibility to and perceived severity of an infection are the most significant features in the classification task and are associated to significant changes in behaviors. Overall, the research contributes to the small set of empirical studies devoted to the data-driven characterization of behavioral changes induced by infectious diseases.


Subject(s)
Influenza, Human/psychology , Seasons , Algorithms , Disease Susceptibility , Female , Humans , Italy , Male , Surveys and Questionnaires
20.
Phys Rev E ; 99(5-1): 050303, 2019 May.
Article in English | MEDLINE | ID: mdl-31212481

ABSTRACT

Social networks are the prime channel for the spreading of computer viruses. Yet the study of their propagation neglects the temporal nature of social interactions and the heterogeneity of users' susceptibility. Here, we introduce a theoretical framework that captures both properties. We study two realistic types of viruses propagating on temporal networks featuring Q categories of susceptibility and derive analytically the invasion threshold. We found that the temporal coupling of categories might increase the fragility of the system to cyber threats. Our results show that networks' dynamics and their interplay with users' features are crucial for the spreading of computer viruses.

SELECTION OF CITATIONS
SEARCH DETAIL
...