Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Chem Res Toxicol ; 37(6): 1000-1010, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38769630

ABSTRACT

Electronic cigarette smoking (or vaping) is on the rise, presenting questions about the effects of secondhand exposure. The chemical composition of vape emissions was examined in the exhaled breath of eight human volunteers with the high chemical specificity of complementary online and offline techniques. Our study is the first to take multiple exhaled puff measurements from human participants and compare volatile organic compound (VOC) concentrations between two commonly used methods, proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and gas chromatography (GC). Five flavor profile groups were selected for this study, but flavor compounds were not observed as the main contributors to the PTR-ToF-MS signal. Instead, the PTR-ToF-MS mass spectra were overwhelmed by e-liquid thermal decomposition and fragmentation products, which masked other observations regarding flavorings and other potentially toxic species associated with secondhand vape exposure. Compared to the PTR-ToF-MS, GC measurements reported significantly different VOC concentrations, usually below those from PTR-ToF-MS. Consequently, PTR-ToF-MS mass spectra should be interpreted with caution when reporting quantitative results in vaping studies, such as doses of inhaled VOCs. Nevertheless, the online PTR-ToF-MS analysis can provide valuable qualitative information by comparing relative VOCs in back-to-back trials. For example, by comparing the mass spectra of exhaled air with those of direct puffs, we can conclude that harmful VOCs present in the vape emissions are largely absorbed by the participants, including large fractions of nicotine.


Subject(s)
Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Male , Adult , Breath Tests , Female , Mass Spectrometry , Vaping/adverse effects , Exhalation , Electronic Nicotine Delivery Systems , Young Adult , Chromatography, Gas
2.
Article in English | MEDLINE | ID: mdl-38812434

ABSTRACT

One major challenge in predicting secondary organic aerosol (SOA) formation in the atmosphere is incomplete representation of biogenic volatile organic compounds (BVOCs) emitted from plants, particularly those that are emitted as a result of stress - a condition that is becoming more frequent in a rapidly changing climate. One of the most common types of BVOCs emitted by plants in response to environmental stress are acyclic terpenes. In this work, SOA is generated from the photooxidation of acyclic terpenes in an oxidation flow reactor and compared to SOA production from a reference cyclic terpene - α-pinene. The acyclic terpenes used as SOA precursors included ß-myrcene, ß-ocimene, and linalool. Results showed that oxidation of all acyclic terpenes had lower SOA yields measured after 4 days photochemical age, in comparison to α-pinene. However, there was also evidence that the condensed organic products that formed, while a smaller amount overall, had a higher oligomeric content. In particular, ß-ocimene SOA had higher oligomeric content than all the other chemical systems studied. SOA composition data from ultra-high performance liquid chromatography with electrospray ionization mass spectrometry (UHPLC-ESI-MS) was combined with mechanistic modeling using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to explore chemical mechanisms that could lead to this oligomer formation. Calculations based on composition data suggested that ß-ocimene SOA was more viscous with a higher glass transition temperature than other SOA generated from acyclic terpene oxidation. This was attributed to a higher oligomeric content compared to other SOA systems studied. These results contribute to novel chemical insights about SOA formation from acyclic terpenes and relevant chemistry processes, highlighting the importance of improving underrepresented biogenic SOA formation in chemical transport models.

3.
Proc Natl Acad Sci U S A ; 121(13): e2313897121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466875

ABSTRACT

Although the last several decades have seen a dramatic reduction in emissions from vehicular exhaust, nonexhaust emissions (e.g., brake and tire wear) represent an increasingly significant class of traffic-related particulate pollution. Aerosol particles emitted from the wear of automotive brake pads contribute roughly half of the particle mass attributed to nonexhaust sources, while their relative contribution to urban air pollution overall will almost certainly grow coinciding with vehicle fleet electrification and the transition to alternative fuels. To better understand the implications of this growing prominence, a more thorough understanding of the physicochemical properties of brake wear particles (BWPs) is needed. Here, we investigate the electrical properties of BWPs as emitted from ceramic and semi-metallic brake pads. We show that up to 80% of BWPs emitted are electrically charged and that this fraction is strongly dependent on the specific brake pad material used. A dependence of the number of charges per particle on charge polarity and particle size is also demonstrated. We find that brake wear produces both positive and negative charged particles that can hold in excess of 30 elementary charges and show evidence that more negative charges are produced than positive. Our results will provide insights into the currently limited understanding of BWPs and their charging mechanisms, which potentially have significant implications on their atmospheric lifetimes and thus their relevance to climate and air quality. In addition, our study will inform future efforts to remove BWP emissions before entering the atmosphere by taking advantage of their electric charge.

4.
Phys Chem Chem Phys ; 26(11): 9005-9020, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38440810

ABSTRACT

Alkanolamines are currently being deployed in carbon capture and storage (CCS) technology worldwide, and atmospheric emissions have been found to coincide with locations exhibiting elevated concentrations of methanesulfonic acid (MSA). It is thus critical to understand the fate and potential atmospheric reactions of these chemicals. This study reports the characterization of sub-10 nm nanoparticles produced through the acid-base reaction between gas phase monoethanolamine (MEA) and MSA, a product of organosulfur compound oxidation in air, using a flow reactor under dry and humid (up to ∼60% RH) conditions. Number size distribution measurements show that MEA is even more efficient than methylamine in forming nanoparticles on reaction with MSA. This is attributed to the fact that the MEA structure contains both an -NH2 and an -OH group that facilitate hydrogen bonding within the clusters, in addition to the electrostatic interactions. Due to this already strong H-bond network, water has a relatively small influence on new particle formation (NPF) and growth in this system, in contrast to MSA reactions with alkylamines. Acid/base molar ratios of unity for 4-12 nm particles were measured using thermal desorption chemical ionization mass spectrometry. The data indicate that reaction of MEA with MSA may dominate NPF under some atmospheric conditions. Thus, the unique characteristics of alkanolamines in NPF must be taken into account for accurate predictions of impacts of CCS on visibility, health and climate.

5.
Proc Natl Acad Sci U S A ; 121(7): e2312930121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315860

ABSTRACT

Emerging contaminants (EC) distributed on surfaces in the environment can be oxidized by gas phase species (top-down) or by oxidants generated by the underlying substrate (bottom-up). One class of EC is the neonicotinoid (NN) pesticides that are widely distributed in air, water, and on plant and soil surfaces as well as on airborne dust and building materials. This study investigates the OH oxidation of the systemic NN pesticide acetamiprid (ACM) at room temperature. ACM on particles and as thin films on solid substrates were oxidized by OH radicals either from the gas phase or from an underlying TiO2 or NaNO2 substrate, and for comparison, in the aqueous phase. The site of OH attack is both the secondary >CH2 group as well as the primary -CH3 group attached to the tertiary amine nitrogen, with the latter dominating. In the case of top-down oxidation of ACM by gas phase OH radicals, addition to the -CN group also occurs. Major products are carbonyls and alcohols, but in the presence of sufficient water, their hydrolyzed products dominate. Kinetics measurements show ACM is more reactive toward gas phase OH radicals than other NN nitroguanidines, with an atmospheric lifetime of a few days. Bottom-up oxidation of ACM on TiO2 exposed to sunlight outdoors (temperatures were above 30 °C) was also shown to occur and is likely to be competitive with top-down oxidation. These findings highlight the different potential oxidation processes for EC and provide key data for assessing their environmental fates and toxicologies.

6.
Environ Sci Technol ; 57(38): 14260-14268, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37695633

ABSTRACT

Organic peroxides are key intermediates in the atmosphere but are challenging to detect, especially in the particle phase, due to their instability, which has led to substantial gaps in the understanding of their environmental effects. We demonstrate that matrix-assisted ionization in vacuum (MAIV) mass spectrometry (MS), which does not require an ionization source, enables in situ characterization of peroxides and other products in the surface layers of organic particles. Hydroxyl radical oxidation of glutaric acid particles yields hydroperoxides and organic peroxides, which were detected with signals of the same order of magnitude as the major, more stable products. Product identification is supported by MS/MS analysis, peroxide standards, and offline high-resolution MS. The peroxide signals relative to the stable carbonyl and alcohol products are significantly larger using MAIV compared to those in the offline bulk analysis. This is also the case for analysis using fast, online easy ambient sonic-spray ionization mass spectrometry. These studies demonstrate the advantage of MAIV for the real-time characterization of labile peroxides in the surface layers of solid particles. The presence of peroxides on the surface may be important for surface oxidation processes as well as for the toxicity of inhaled particles.


Subject(s)
Peroxides , Tandem Mass Spectrometry , Vacuum , Hydrogen Peroxide , Aerosols
7.
Sci Adv ; 9(9): eade9609, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36867707

ABSTRACT

While nitro and amino alkenes are common in pharmaceuticals, pesticides, and munitions, their environmental fates are not well known. Ozone is a ubiquitous atmospheric oxidant for alkenes, but the synergistic effects of nitrogen-containing groups on the reactions have not been measured. The kinetics and products of ozonolysis of a series of model compounds with different combinations of these functional groups have been measured in the condensed phase using stopped-flow and mass spectrometry methods. Rate constants span about six orders of magnitude with activation energies ranging from 4.3 to 28.2 kJ mol-1. Vinyl nitro groups substantially decrease the reactivity, while amino groups have the opposite effect. The site of the initial ozone attack is highly structure dependent, consistent with local ionization energy calculations. The reaction of the neonicotinoid pesticide nitenpyram, which forms toxic N-nitroso compounds, was consistent with model compounds, confirming the utility of model compounds for assessing environmental fates of these emerging contaminants.

8.
Part Fibre Toxicol ; 19(1): 5, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996492

ABSTRACT

BACKGROUND: Fine particulate matter (PM2.5) exposure accelerates atherosclerosis and contains known ovotoxic chemicals. However, effects of exposure to PM2.5 on the finite ovarian follicle pool have hardly been investigated, nor have interactions between ovarian and cardiovascular effects. We hypothesized that subchronic inhalation exposure to human-relevant concentrations of PM2.5 results in destruction of ovarian follicles via apoptosis induction, as well as accelerated recruitment of primordial follicles into the growing pool. Further, we hypothesized that destruction of ovarian follicles enhances the adverse cardiovascular effects of PM2.5 in females. RESULTS: Hyperlipidemic apolipoprotein E (Apoe) null ovary-intact or ovariectomized female mice and testis-intact male mice were exposed to concentrated ambient PM2.5 or filtered air for 12 weeks, 5 days/week for 4 h/day using a versatile aerosol concentration enrichment system. Primordial, primary, and secondary ovarian follicle numbers were decreased by 45%, 40%, and 17%, respectively, in PM2.5-exposed ovary-intact mice compared to controls (P < 0.05). The percentage of primary follicles with granulosa cells positive for the mitosis marker Ki67 was increased in the ovaries from PM2.5-exposed females versus controls (P < 0.05), consistent with increased recruitment of primordial follicles into the growing pool. Exposure to PM2.5 increased the percentages of primary and secondary follicles with DNA damage, assessed by γH2AX immunostaining (P < 0.05). Exposure to PM2.5 increased the percentages of apoptotic antral follicles, determined by TUNEL and activated caspase 3 immunostaining (P < 0.05). Removal of the ovaries and PM2.5-exposure exacerbated the atherosclerotic effects of hyperlipidemia in females (P < 0.05). While there were statistically significant changes in blood pressure and heart rate variability in PM2.5-compared to Air-exposed gonad-intact males and females and ovariectomized females, the changes were not consistent between exposure years and assessment methods. CONCLUSIONS: These results demonstrate that subchronic PM2.5 exposure depletes the ovarian reserve by increasing recruitment of primordial follicles into the growing pool and increasing apoptosis of growing follicles. Further, PM2.5 exposure and removal of the ovaries each increase atherosclerosis progression in Apoe-/- females. Premature loss of ovarian function is associated with increased risk of osteoporosis, cardiovascular disease and Alzheimer's disease in women. Our results thus support possible links between PM2.5 exposure and other adverse health outcomes in women.


Subject(s)
Ovarian Reserve , Animals , Apolipoproteins , Apolipoproteins E/genetics , Female , Male , Mice , Mice, Knockout , Ovarian Follicle , Particulate Matter/toxicity
9.
Environ Sci Process Impacts ; 22(2): 305-328, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31904037

ABSTRACT

While new particle formation events have been observed worldwide, our fundamental understanding of the precursors remains uncertain. It has been previously shown that small alkylamines and ammonia (NH3) are key actors in sub-3 nm particle formation through reactions with acids such as sulfuric acid (H2SO4) and methanesulfonic acid (CH3S(O)(O)OH, MSA), and that water also plays a role. Because NH3 and amines co-exist in air, we carried out combined experimental and theoretical studies examining the influence of the addition of NH3 on particle formation from the reactions of MSA with methylamine (MA) and trimethylamine (TMA). Experiments were performed in a 1 m flow reactor at 1 atm and 296 K. Measurements using an ultrafine condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS) show that new particle formation was systematically enhanced upon simultaneous addition of NH3 to the MSA + amine binary system, with the magnitude depending on the amine investigated. For the MSA + TMA reaction system, the addition of NH3 at ppb concentrations produced a much greater effect (i.e. order of magnitude more particles) than the addition of ∼12 000 ppm water (corresponding to ∼45-50% relative humidity). The effect of NH3 on the MSA + MA system, which is already very efficient in forming particles on its own, was present but modest. Calculations of energies, partial charges and structures of small cluster models of the multi-component particles likewise suggest synergistic effects due to NH3 in the presence of MSA and amine. The local minimum structures and the interactions involved suggest mechanisms for this effect.


Subject(s)
Ammonia , Mesylates , Amines , Ammonia/chemistry , Mesylates/chemistry , Water
11.
Rapid Commun Mass Spectrom ; 34(10): e8561, 2020 May 30.
Article in English | MEDLINE | ID: mdl-31429122

ABSTRACT

RATIONALE: Contaminants present in ambient air or in sampling lines can interfere with the target analysis through overlapping peaks or causing a high background. This study presents a positive outcome from the unexpected presence of N-methyl-2-pyrrolidone, released from a PALL HEPA filter, in the analysis of atmospherically relevant gas-phase amines using chemical ionization mass spectrometry. METHODS: Gas-phase measurements were performed using a triple quadrupole mass spectrometer equipped with a modified atmospheric pressure gas chromatography (APGC) source which allows sampling of the headspace above pure amine standards. Gas-phase N-methyl-2-pyrrolidone (NMP) emitted from a PALL HEPA filter located in the inlet stream served as the ionizing agent. RESULTS: This study demonstrates that some alkylamines efficiently form a [NMP + amine+H]+ cluster with NMP upon chemical ionization at atmospheric pressure. The extent of cluster formation depends largely on the proton affinity of the amine compared with that of NMP. Aromatic amines (aniline, pyridine) and diamines (putrescine) were shown not to form cluster ions with NMP. CONCLUSIONS: The use of NMP as an ionizing agent with stand-alone APGC provided high sensitivity for ammonia and the smaller amines. The main advantages, in addition to sensitivity, are direct sampling into the APGC source and avoiding uptake on sampling lines which can be a significant problem with ammonia and amines.

12.
Environ Sci Process Impacts ; 22(1): 66-83, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31670732

ABSTRACT

Secondary organic aerosol (SOA) particles are ubiquitous in air and understanding the mechanism by which they grow is critical for predicting their effects on visibility and climate. The uptake of three organic nitrates into semi-solid SOA particles formed by α-pinene ozonolysis either with or without an OH scavenger was investigated. Four types of experiments are presented here. In Series A, uptake of the selected organic nitrates (2-ethylhexyl nitrate (2EHN); ß-hydroxypropyl nitrate (HPN); ß-hydroxyhexyl nitrate (HHN)) into impacted SOA particles was interrogated by attenuated total reflectance (ATR)-FTIR. In this case, equilibrium was reached and partition coefficients (KSOA = [-ONO2]SOA/[-ONO2]air) were measured to be K2EHN = (3.2-11) × 104, KHPN = (4.4-5.4) × 105, and KHHN = (4.9-9.0) × 106. In Series B, SOA particles were exposed on-the-fly to gas phase organic nitrates for comparison to Series A, and uptake of organic nitrates was quantified by HR-ToF-AMS analysis, which yielded similar results. In Series C (AMS) and D (ATR-FTIR), each organic nitrate was incorporated into the SOA as the particles formed and grew. The incorporation of the RONO2 was much larger in Series C and D (during growth), exceeding equilibrium values determined in Series A and B (after growth). This suggests that enhanced uptake of organic nitrates during SOA formation and growth is due to a kinetically controlled "burying" mechanism, rather than equilibrium partitioning. This has important implications for understanding SOA formation and growth under conditions where the particles are semi-solid, which is central to accurately predicting properties for such SOA.


Subject(s)
Aerosols , Air Pollutants , Ozone , Aerosols/chemistry , Air Pollutants/chemistry , Climate , Monoterpenes , Viscosity
13.
Aerosol Sci Technol ; 53(9): 1023-1039, 2019.
Article in English | MEDLINE | ID: mdl-33041429

ABSTRACT

Waterpipe smoking is becoming more popular worldwide and there is a pressing need to better characterize the exposure of smokers to chemical compounds present in the mainstream smoke. We report real-time measurements of mainstream smoke for carbon monoxide, volatile organic compounds and nanoparticle size distribution and chemical composition using a custom dilution flow tube. A conventional tobacco mixture, a dark leaf unwashed tobacco and a nicotine-free herbal tobacco were studied. Results show that carbon monoxide is present in the mainstream smoke and originates primarily from the charcoal used to heat the tobacco. Online measurements of volatile organic compounds in mainstream smoke showed an overwhelming contribution from glycerol. Gas phase analysis also showed that very little filtration of the gas phase products is provided by the percolation of mainstream smoke through water. Waterpipe smoking generated high concentrations of 4-100 nm nanoparticles, which were mainly composed of sugar derivatives and especially abundant in the first 10 min of the smoking session. These measured emissions of volatiles and particles are compared with those from a reference cigarette (3R4F) and represent the equivalent of the emission of one or more entire cigarettes for a single puff of hookah smoke. Considerations related to the health impacts of waterpipe smoking are discussed.

14.
Phys Chem Chem Phys ; 20(34): 22249-22259, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30123899

ABSTRACT

The effect of water on the growth of dry nano-size acid-base particles is not yet known. In this paper, we investigate the uptake of water by nano-size particles composed of methanesulfonic acid (MSA) and methylamine (MA) using a combination of quantum chemical calculations and laboratory experiments. Calculations were performed on the (MSA-MA)4 cluster as the dry nanoparticle model, which forms a pseudo-cubic structure, to which twelve water molecules were added successively. Theoretical results show that the hydrated clusters (MSA-MA)4-(H2O)n, n = 1 to 12 are thermodynamically stable. In ab initio dynamic simulations, no loss of water or significant changes of structure are seen for at least 10 picoseconds. In all the clusters studied, most of the water molecules lie on the face of the (MSA-MA)4 initial dry unit, and water is found to be incorporated inside the initial unit for n ranging from five to twelve. Sizes of hydrated clusters exceed significantly that of the dry cluster only for n ≥ 6. These theoretical results suggest that dry MSA-MA clusters cannot dissociate in small quantities of water. Calculations of hydrated cluster distributions at steady state show that the cluster compositions studied, with up to 12 water molecules, encompass all the hydrated clusters under the experimental conditions (RH ∼ 19%, 300 K). Experiments performed in a glass flow reactor showed no changes in size or number concentration when particles formed from MSA-MA were subsequently exposed to water vapor, in contrast to increases in both size and number when water was present during particle formation. Thus, the results seem to imply for both experiment and theory that growth in size of a particle due to uptake of water requires the previous presence of some level of hydration. These results illustrate the importance for atmospheric models of understanding on a molecular basis the mechanisms of particle formation in air.

15.
Rapid Commun Mass Spectrom ; 31(19): 1659-1668, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28782138

ABSTRACT

RATIONALE: Ambient ionization mass spectrometry methods are convenient, sensitive and require little sample preparation. However, they are susceptible to species present in air surrounding the mass spectrometer. This study identifies some challenges associated with the potential impacts of indoor air contaminants on ionization and analysis involving open-air methods. METHODS: Unexpected effects of volatile organic compounds (VOCs) from floor maintenance activities on ambient ionization mass spectrometry were studied using three different ambient ionization techniques. Extractive electrospray ionization (EESI), direct analysis in real time (DART) and ionization by piezoelectric direct discharge (PDD) plasma were demonstrated in this study to be affected by indoor air contaminants. Identification of contaminant vapors was verified by comparison with standards using EESI-MS/MS product ion scans. RESULTS: Emissions of diethylene glycol monoethyl ether and ethylene glycol monobutyl ether are identified from floor stripping and waxing solutions using three ambient ionization mass spectrometry techniques. These unexpected indoor air contaminants are capable of more than 75% ion suppression of target analytes due to their high volatility, proton affinity and solubility compared with the target analytes. The contaminant vapors are also shown to form adducts with one of the target analytes. CONCLUSIONS: The common practice in MS analysis of subtracting a background air spectrum may not be appropriate if the presence of ionizable air contaminants alters the spectrum in unexpected ways. For example, VOCs released into air from floor stripping and waxing are capable of causing ion suppression of target analytes.

16.
Proc Natl Acad Sci U S A ; 112(44): 13514-9, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26483454

ABSTRACT

Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.


Subject(s)
Air Pollutants/chemistry , Particulate Matter/chemistry , Sulfur Dioxide/chemistry , Sulfur/chemistry , Ecological Parameter Monitoring/methods , Ecological Parameter Monitoring/trends , Environmental Monitoring/methods , Forecasting , Fossil Fuels , Humans , Mesylates/chemistry , Models, Theoretical , Oxidation-Reduction , Particle Size , Sulfuric Acids/chemistry
17.
Phys Chem Chem Phys ; 17(19): 12500-14, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25899614

ABSTRACT

Ozonolysis of alkenes is an important source of secondary organic aerosol (SOA) in the atmosphere. However, the mechanisms by which stabilized Criegee intermediates (SCI) react to form and grow the particles, and in particular the contributions from oligomers, are not well understood. In this study, ozonolysis of trans-3-hexene (C6H12), as a proxy for small alkenes, was investigated with an emphasis on the mechanisms of particle formation and growth. Ozonolysis experiments were carried out both in static Teflon chambers (18-20 min reaction times) and in a glass flow reactor (24 s reaction time) in the absence and presence of OH or SCI scavengers, and under different relative humidity (RH) conditions. The chemical composition of polydisperse and size-selected SOA particles was probed using different mass spectrometric techniques and infrared spectroscopy. Oligomers having SCI as the chain unit are found to be the dominant components of such SOA particles. The formation mechanism for these oligomers suggested by our results follows the sequential addition of SCI to organic peroxy (RO2) radicals, in agreement with previous studies by Moortgat and coworkers. Smaller particles are shown to have a relatively greater contribution from longer oligomers. Higher O/C ratios are observed in smaller particles and are similar to those of oligomers resulting from RO2 + nSCI, supporting a significant role for longer oligomers in particle nucleation and early growth. Under atmospherically relevant RH of 30-80%, water vapor suppresses oligomer formation through scavenging SCI, but also enhances particle nucleation. Under humid conditions, or in the presence of formic or hydrochloric acid as SCI scavengers, peroxyhemiacetals are formed by the acid-catalyzed particle phase reaction between oligomers from RO2 + nSCI and a trans-3-hexene derived carbonyl product. In contrast to the ozonolysis of trans-3-hexene, oligomerization involving RO2 + nSCI does not appear to be prevalent in the ozonolysis of α-cedrene (C15H24), indicating different particle formation mechanisms for small and large complex alkenes that need to be taken into account in atmospheric models.

18.
Phys Chem Chem Phys ; 16(41): 22706-16, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25232800

ABSTRACT

Understanding mechanisms of formation, growth and physical properties of secondary organic aerosol (SOA) is central to predicting impacts on visibility, health and climate. It has been known for many decades that the oxidation of monoterpenes by ozone in the gas phase readily forms particles. However, the species responsible for the initial nucleation and the subsequent growth are not well established. Recent studies point to high molecular weight highly oxygenated products with extremely low vapor pressures (ELVOC, extremely low volatility organic compounds) as being responsible for the initial nucleation, with more volatile species contributing to particle growth. We report here the results of studies of SOA formed in the ozonolysis of α-pinene in air at 297 ± 2 K using atmospheric solids analysis probe (ASAP) mass spectrometry, attenuated total reflectance (ATR) Fourier transform infrared spectrometry and proton transfer reaction (PTR) mass spectrometry. Smaller particles are shown to be less volatile and have on average higher molecular mass components compared to larger particles, consistent with recent proposals regarding species responsible for the formation and growth of particles in this system. Thus the signatures of species responsible for particle development at various stages are observable even in particles of several hundred nm diameter. Pinonaldehyde and acetic acid were observed to evaporate from a film of impacted SOA at room temperature, from which the ratio of their diffusion coefficients to the square of the average film thickness, D/l(2), could be obtained. For acetic acid and pinonaldehyde, D/l(2) = 6.8 × 10(-6) s(-1) and 5.0 × 10(-6) s(-1) respectively, the relative magnitudes being consistent with the size difference between acetic acid and pinonaldehyde molecules. Limitations to quantifying the film thickness and hence absolute values of the diffusion coefficient are discussed and highlight a need for novel experimental methods for quantifying diffusion coefficients of organic species in SOA.

19.
Environ Sci Technol ; 48(19): 11405-12, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25198906

ABSTRACT

Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.


Subject(s)
Air Pollutants/analysis , Cyanates/analysis , Motor Vehicles , Vehicle Emissions/analysis , Gasoline
20.
Proc Natl Acad Sci U S A ; 111(21): 7552-7, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24821796

ABSTRACT

Airborne particles are important for public health, visibility, and climate. Predicting their concentrations, effects, and responses to control strategies requires accurate models of their formation and growth in air. This is challenging, as a large fraction is formed by complex reactions of volatile organic compounds, generating secondary organic aerosol (SOA), which grows to sizes important for visibility, climate, and deposition in the lung. Growth of SOA is particularly sensitive to the phase/viscosity of the particles and remains poorly understood. We report studies using a custom-designed impactor with a germanium crystal as the impaction surface to study SOA formed from the ozonolysis of α-pinene at relative humidities (RHs) up to 87% at 297 ± 2 K (which corresponds to a maximum RH of 70-86% inside the impactor). The impaction patterns provide insight into changes in phase/viscosity as a function of RH. Attenuated total reflectance-Fourier transform infrared spectroscopy and aerosol mass spectrometry provide simultaneous information on composition changes with RH. The results show that as the RH at which the SOA is formed increases, there is a decrease in viscosity, accompanied by an increasing contribution from carboxylic acids and a decreasing contribution from higher molecular mass products. In contrast, SOA that is formed dry and subsequently humidified remains solid to high RH. The results of these studies have significant implications for modeling the growth, aging, and ultimately, lifetime of SOA in the atmosphere.


Subject(s)
Aerosols/analysis , Air Pollution/analysis , Atmosphere/chemistry , Models, Chemical , Monoterpenes/chemistry , Ozone/chemistry , Bicyclic Monoterpenes , Humidity , Phase Transition , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...