Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35591574

ABSTRACT

The high-entropy transition metal borides containing a random distribution of five or more constituent metallic elements offer novel opportunities in designing materials that show crystalline phase stability, high strength, and thermal oxidation resistance under extreme conditions. We present a comprehensive theoretical and experimental investigation of prototypical high-entropy boride (HEB) materials such as (Hf, Mo, Nb, Ta, Ti)B2 and (Hf, Mo, Nb, Ta, Zr)B2 under extreme environments of pressures and temperatures. The theoretical tools include modeling elastic properties by special quasi-random structures that predict a bulk modulus of 288 GPa and a shear modulus of 215 GPa at ambient conditions. HEB samples were synthesized under high pressures and high temperatures and studied to 9.5 GPa and 2273 K in a large-volume pressure cell. The thermal equation of state measurement yielded a bulk modulus of 276 GPa, in excellent agreement with theory. The measured compressive yield strength by radial X-ray diffraction technique in a diamond anvil cell was 28 GPa at a pressure of 65 GPa, which is a significant fraction of the shear modulus at high pressures. The high compressive strength and phase stability of this material under high pressures and high temperatures make it an ideal candidate for application as a structural material in nuclear and aerospace fields.

2.
Materials (Basel) ; 16(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36614497

ABSTRACT

The high-entropy boride (Hf0.2Mo0.2Nb0.2Ta0.2Zr0.2)B2 material was synthesized under high-pressures and high-temperatures in a large-volume Paris-Edinburgh (PE) press from a ball-milled powder mix of HfO2, MoO3, Nb2O5, Ta2O5, ZrO2, carbon black, and boron carbide. The transformation process was monitored in situ by energy-dispersive x-ray diffraction with conversion starting at 1100 °C and completed by 2000 °C with the formation of a single hexagonal AlB2-type phase. The synthesized sample was recovered, powdered, and mixed with platinum pressure marker and studied under high pressure by angle-dispersive x-ray diffraction in a diamond anvil cell. The hexagonal AlB2-type phase of (Hf0.2Mo0.2Nb0.2Ta0.2Zr0.2)B2 was found to be stable up to the highest pressure of 220 GPa reached in this study (volume compression V/V0 = 0.70). The third order Birch-Murnaghan equation of state fit to the high-pressure data up to 220 GPa results in an ambient pressure unit cell volume V0=28.16±0.04 Å3, bulk modulusKo = 407 ± 6 GPa, pressure derivative of bulk-modulus K0' = 2.73 ± 0.045 GPa. Our study indicates that this high-entropy boride (Hf0.2Mo0.2Nb0.2Ta0.2Zr0.2)B2 material is stable to ultrahigh pressures and temperatures and exhibit high bulk modulus similar to other incompressible transition metal borides like ReB2 and Os2B3.

SELECTION OF CITATIONS
SEARCH DETAIL
...