Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 38(4): 1993-2004, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21626932

ABSTRACT

PURPOSE: Recently, the attenuating behavior of soft tissue has been addressed in magnetic resonance elastography by the inclusion of a damping mechanism in the methods used to reconstruct the resulting mechanical property image. To date, this mechanism has been based on a viscoelastic model for material behavior. Rayleigh, or proportional, damping provides a more generalized model for elastic energy attenuation that uses two parameters to characterize contributions proportional to elastic and inertial forces. In the case of time-harmonic vibration, these two parameters lead to both the elastic modulus and the density being complex valued (as opposed to the case of pure viscoelasticity, where only the elastic modulus is complex valued). METHODS: This article presents a description of Rayleigh damping in the time-harmonic case, discussing the differences between this model and the viscoelastic damping models. In addition, the results from a subzone based Rayleigh damped elastography study of gelatin and tofu phantoms are discussed, along with preliminary results from in vivo breast data. RESULTS: Both the phantom and the tissue studies presented here indicate a change in the Rayleigh damping structure, described as Rayleigh composition, between different material types, with tofu and healthy tissue showing lower Rayleigh composition values than gelatin or cancerous tissue. CONCLUSIONS: It is possible that Rayleigh damping elastography and the concomitant Rayleigh composition images provide a mechanism for differentiating tissue structure in addition to measuring elastic stiffness and attenuation. Such information could be valuable in the use of Rayleigh damped magnetic resonance elastography as a diagnostic imaging tool.


Subject(s)
Elasticity Imaging Techniques/methods , Models, Biological , Biomechanical Phenomena , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging
2.
Phys Med Biol ; 56(13): N153-64, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21654044

ABSTRACT

A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, µ, through the definition of shear stress, τ = µÎ³. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects.


Subject(s)
Elasticity Imaging Techniques/methods , Imaging, Three-Dimensional/methods , Stress, Mechanical , Animals , Cats , Echoencephalography , Elasticity , Gelatin , Humans , Phantoms, Imaging , Ultrasonography, Mammary
3.
J Biomech ; 43(14): 2747-52, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20655045

ABSTRACT

Imaging of the mechanical properties of in vivo brain tissue could eventually lead to non-invasive diagnosis of hydrocephalus, Alzheimer's disease and other pathologies known to alter the intracranial environment. The purpose of this work is to (1) use time-harmonic magnetic resonance elastography (MRE) to estimate the mechanical property distribution of cerebral tissue in the normal feline brain and (2) compare the recovered properties of grey and white matter. Various in vivo and ex vivo brain tissue property measurement strategies have led to the highly variable results that have been reported in the literature. MR elastography is an imaging technique that can estimate mechanical properties of tissue non-invasively and in vivo. Data was acquired in 14 felines and elastic parameters were estimated using a globo-regional nonlinear image reconstruction algorithm. Results fell within the range of values reported in the literature and showed a mean shear modulus across the subject group of 7-8 kPa with all but one animal falling within 5-15 kPa. White matter was statistically stiffer (p<0.01) than grey matter by about 1 kPa on a per subject basis. To the best of our knowledge, the results reported represent the most extensive set of estimates in the in vivo brain which have been based on MRE acquisition of the three-dimensional displacement field coupled to volumetric shear modulus image reconstruction achieved through nonlinear parameter estimation. However, the inter-subject variation in mean shear modulus indicates the need for further study, including the possibility of applying more advanced models to estimate the relevant tissue mechanical properties from the data.


Subject(s)
Brain/physiology , Elasticity Imaging Techniques/methods , Algorithms , Animals , Biomechanical Phenomena , Cats , Elastic Modulus , Female , Humans , Image Processing, Computer-Assisted , In Vitro Techniques , Models, Animal , Models, Neurological , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...