Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Drug Metab Pharmacokinet ; 45(6): 725-733, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32860624

ABSTRACT

BACKGROUND AND OBJECTIVE: Imeglimin is a novel oral antidiabetic drug to treat type 2 diabetes, targeting the mitochondrial bioenergetics. In vitro, imeglimin was shown to be a substrate of human multidrug and toxic extrusion transporters MATE1 and MATE2-K and organic cation transporters OCT1 and OCT2. The objective of the study was to assess the potential drug-drug interaction between imeglimin and cimetidine, a reference inhibitor of these transporters. METHODS: A phase 1 study was carried out in 16 subjects who received a single dose of 1500 mg imeglimin alone on day 1 followed by a 6-day treatment (day 5 to day 10) with cimetidine 400 mg twice daily. On day 8, a single dose of imeglimin was co-administered with cimetidine. Blood and urine samples were collected up to 72 h after each imeglimin administration. Pharmacokinetic parameters were determined using non-compartmental methods. RESULTS: Imeglimin maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) were 1.3-fold [90% CI (1.12-1.62) and (1.10-1.46) for Cmax and AUC0-last, respectively] higher when imeglimin was co-administered with cimetidine but this increase was not considered clinically relevant. This increase could be mainly explained by a reduction in renal elimination, mediated through the cimetidine inhibition of renal MATE1 transporter. Imeglimin taken alone or with cimetidine was safe and well tolerated in all subjects. CONCLUSIONS: No clinically significant drug-drug interaction exists between imeglimin and cimetidine, a reference inhibitor of MATE1, MATE2-K, OCT1 and OCT2 transporters. CLINICAL TRIAL REGISTRATION: EudraCT 2018-001103-36.


Subject(s)
Cimetidine/pharmacology , Histamine H2 Antagonists/pharmacology , Hypoglycemic Agents/pharmacokinetics , Kidney/metabolism , Triazines/pharmacokinetics , Adult , Area Under Curve , Drug Interactions , Female , HEK293 Cells , Healthy Volunteers , Humans , Kidney/drug effects , Male , Middle Aged , Octamer Transcription Factor-1/antagonists & inhibitors , Octamer Transcription Factor-1/metabolism , Organic Cation Transport Proteins/antagonists & inhibitors , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 2/antagonists & inhibitors , Organic Cation Transporter 2/metabolism , Young Adult
2.
Eur J Clin Pharmacol ; 76(10): 1393-1400, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32556539

ABSTRACT

PURPOSE: Imeglimin is the first in a new class of oral antidiabetic agents, the glimins, currently in development to improve glycemic control in patients with type 2 diabetes mellitus. A thorough QT study was conducted to establish electrophysiological effects of therapeutic and supratherapeutic doses of imeglimin on cardiac repolarization. METHODS: In this randomized, double-blind, four-period, placebo and active controlled crossover study, healthy subjects were administered a single dose of imeglimin 2250 mg, imeglimin 6000 mg, moxifloxacin 400 mg, and placebo. 12-Lead Holter ECGs were recorded from 1 h before dosing until at least 24 h after each dose. This study was performed at a single-center inpatient clinical pharmacology unit. RESULTS: The upper bound of the two-sided 90% confidence interval for time-matched, placebo-subtracted, baseline-adjusted QTc intervals (ΔΔQTcF) did not exceed the regulatory threshold of 10 ms in any of the imeglimin dose groups. There were no QTcF values above 500 ms nor changes from pre-dose in QTcF above 60 ms in the imeglimin groups. Imeglimin did not exert a relevant effect on heart rate and PR or QRS intervals. Assay sensitivity was demonstrated by the effect of moxifloxacin 400 mg, with a lower bound two-sided 90% confidence interval for ΔΔQTcF of 10.6 ms. CONCLUSION: This thorough QT study demonstrated that therapeutic and supratherapeutic exposures of imeglimin did not induce a QT/QTc prolongation with a strong confidence as evidenced by the assay sensitivity. TRIAL REGISTRATION NUMBER/DATE: NCT02924337/ October 5, 2016.


Subject(s)
Hypoglycemic Agents/adverse effects , Long QT Syndrome/chemically induced , Triazines/adverse effects , Adult , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Electrocardiography , Female , Humans , Hypoglycemic Agents/administration & dosage , Male , Moxifloxacin/adverse effects , Triazines/administration & dosage
3.
Clin Pharmacokinet ; 59(10): 1261-1271, 2020 10.
Article in English | MEDLINE | ID: mdl-32270440

ABSTRACT

BACKGROUND AND OBJECTIVES: Imeglimin (IMEG) is the first in a novel class of oral glucose-lowering agents with a unique mechanism of action targeting mitochondrial bioenergetics. We assessed whether repeated co-administration of IMEG and either metformin (MET) or sitagliptin (SITA) would influence the pharmacokinetics of either MET or SITA in healthy Caucasian men. METHODS: Healthy Caucasian men received either MET 850 mg twice daily with placebo (n = 16) or SITA 100 mg once daily with placebo (n = 16) on days 1-6, followed by MET 850 mg twice daily with IMEG 1500 mg twice daily or SITA 100 mg once daily with IMEG 1500 mg twice daily on days 7-12. Pharmacokinetic parameters were determined from blood and urine; levels of all compounds were evaluated using liquid chromatography with tandem mass spectrometry. RESULTS: Systemic exposure (AUC0-τ area under the plasma concentration-time curve over a dosing interval and maximum concentration) to MET was 14% and 10% lower, respectively, when administered with IMEG. Approximately 40% of MET was excreted unchanged in urine, decreasing to 34% when given with IMEG. The 90% confidence intervals for AUC0-τ and maximum concentration indicated no effect of co-administration on systemic exposure to MET. Mean AUC0-τ and maximum concentration of SITA were similar with or without IMEG. Median times to maximum concentration were 0.7 and 1.0 h and mean elimination half-lives were 8.2 and 8.7 h with and without IMEG, respectively. Systemic exposure to IMEG was similar to previous phase I studies. CONCLUSIONS: Co-administration of IMEG with MET or SITA did not result in clinically relevant changes in systemic exposure to MET or SITA, although minor reductions in exposure (AUC0-τ and maximum concentration) and renal elimination were noted when MET was given with IMEG vs placebo. CLINICAL TRIAL REGISTRATION: EudraCT2009-014520-40 (MET-IMEG DDI) and EudraCT2010-022926-34 (SITA-IMEG DDI).


Subject(s)
Hypoglycemic Agents/pharmacokinetics , Metformin , Sitagliptin Phosphate , Triazines/pharmacokinetics , Area Under Curve , Healthy Volunteers , Humans , Male , Metformin/pharmacokinetics , Sitagliptin Phosphate/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...