Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 9(37): 13938-13946, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28686260

ABSTRACT

From aircraft to electronic devices, and even in Formula One cars, stress is the main cause of degraded material performance and mechanical failure in applications incorporating thin films and coatings. Over the last two decades, the scientific community has searched for the mechanisms responsible for stress generation in films, with no consensus in sight. The main difficulty is that most current models of stress generation, while atomistic in nature, are based on macroscopic measurements. Here, we demonstrate a novel method for mapping the stress at the surface of polycrystals with sub-10 nm spatial resolution. This method consists of transforming elastic modulus maps measured by atomic force microscopy techniques into stress maps via the local stress-stiffening effect. The validity of this approach is supported by finite element modeling simulations. Our study reveals a strongly heterogeneous distribution of intrinsic stress in polycrystalline Au films, with gradients as high as 100 MPa nm-1 near the grain boundaries. Consequently, our study discloses the limited capacity of macroscopic stress assessments and standard tests to discriminate among models, and the great potential of nanometer-scale stress mapping.

2.
Nanotechnology ; 27(27): 275703, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27232523

ABSTRACT

Non-destructive subsurface characterization of nanoscale structures and devices is of significant interest in nanolithography and nanomanufacturing. In those areas, the accurate location of the buried structures and their nanomechanical properties are relevant for optimization of the nanofabrication process and the functionality of the system. Here we demonstrate the capabilities of bimodal and trimodal force microscopy for imaging silicon nanowire devices buried under an ultrathin polymer film. We resolve the morphology and periodicities of silicon nanowire pairs. We report a spatial resolution in the sub-10 nm range for nanostructures buried under a 70 nm thick polymer film. By using numerical simulations we explain the role of the excited modes in the subsurface imaging process. Independent of the bimodal or trimodal atomic force microscopy approach, the fundamental mode is the most suitable for tracking the topography while the higher modes modulate the interaction of the tip with the buried nanostructures and provide subsurface contrast.

SELECTION OF CITATIONS
SEARCH DETAIL
...