Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 12(11): 6378-6384, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32134422

ABSTRACT

The concept of Perpendicular Shape Anisotropy STT-MRAM (PSA-STT-MRAM) has been recently proposed as a solution to enable the downsize scalability of STT-MRAM devices beyond the sub-20 nm technology node. For conventional p-STT-MRAM devices with sub-20 nm diameters, the perpendicular anisotropy arising from the MgO/CoFeB interface becomes too weak to ensure thermal stability of the storage layer. In addition, this interfacial anisotropy rapidly decreases with increasing temperature which constitutes a drawback in applications with a large range of operating temperatures. Here, we show that by using a PSA based storage layer, the source of anisotropy is much more robust against thermal fluctuations than the interfacial anisotropy, which allows considerable reduction of the temperature dependence of the coercivity. From a practical point of view, this is very interesting for applications having to operate on a wide range of temperatures (e.g. automotive -40 °C/+150 °C).

2.
Nanoscale ; 10(25): 12187-12195, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29923577

ABSTRACT

A new approach to increase the downsize scalability of perpendicular STT-MRAM is presented. It consists of significantly increasing the thickness of the storage layer in out-of-plane magnetized tunnel junctions (pMTJ) as compared to conventional pMTJ in order to induce a perpendicular shape anisotropy (PSA) in this layer. This PSA is obtained by depositing a thick ferromagnetic (FM) layer on top of an MgO/FeCoB based magnetic tunnel junction (MTJ) so that the thickness of the storage layer is of the order of or larger than the diameter of the MTJ pillar. In contrast to conventional spin transfer torque magnetic random access memory (STT-MRAM) wherein the demagnetizing energy opposes the interfacial perpendicular magnetic anisotropy (iPMA), in these novel memory cells, both PSA and iPMA contributions favor the out-of-plane orientation of the storage layer magnetization. Using thicker storage layers in these PSA-STT-MRAMs has several advantages. Due to the PSA, very high and easily tunable thermal stability factors can be achieved, even down to sub-10 nm diameters. Moreover, a low damping material can be used for the thick FM material thus leading to a reduction of the write current. The paper describes this new PSA-STT-MRAM concept, practical realization of such memory arrays, magnetic characterization demonstrating thermal stability factor above 200 for MTJs as small as 8 nm in diameter and possibility to maintain the thermal stability factor above 60 down to 4 nm diameter.

3.
Nano Lett ; 15(4): 2312-7, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25751406

ABSTRACT

A micromechanical resonator embedded with a nanomechanical resonator is developed whose dynamics can be captured by the coupled-Van der Pol-Duffing equations. Activating the nanomechanical resonator can dispersively shift the micromechanical resonance by more than 100 times its bandwidth and concurrently increase its energy dissipation rate to the point where it can even be deactivated. The coupled-Van der Pol-Duffing equations also suggest the possibility of self-oscillations. In the limit of strong excitation for the nanomechanical resonator, the dissipation in the micromechanical resonator can not only be reduced, resulting in a quality factor of >3× 10(6), it can even be eliminated entirely resulting in the micromechanical resonator spontaneously vibrating.

SELECTION OF CITATIONS
SEARCH DETAIL
...