Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 17470, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838808

ABSTRACT

In this work, we present the development and biofunctionalization of a fiber-optic ball-resonator biosensor for the real-time detection of vaccinia poxvirus. We fabricated several ball-tip resonators, functionalized through a silanization process to immobilize two bioreceptors: the monoclonal anti-L1R antibody targeting the L1R protein, and the polyclonal rabbit serum antibodies targeting the whole vaccinia virus (VV) pathogen. Experimental measurements were carried out to detect VV in concentrations from 103 to 108 plaque-forming units (PFU), with a limit of detection of around 1.7-4.3 × 103 PFU and a log-quadratic pattern, with a response up to 5 × 10-4 RIU (refractive index units). The specificity was assessed against herpes simplex virus, used as a non-specific control, with the best results obtained with anti-L1R monoclonal antibodies, and through the detection of vaccinia virus/herpes simplex-1 combination. The obtained results provide a real-time viral recognition with a label-free sensing platform, having rapid response and ease of manufacturing, and paving the road to the seamless detection of poxviruses affecting different human and animal species using optical fibers.


Subject(s)
Biosensing Techniques , Poxviridae , Vaccinia , Animals , Humans , Rabbits , Vaccinia virus , Fiber Optic Technology
2.
Technol Cancer Res Treat ; 22: 15330338231192850, 2023.
Article in English | MEDLINE | ID: mdl-37551087

ABSTRACT

The diagnosis and treatment of cancer are continuously evolving in search of more efficient, safe, and personalized approaches. Therapies based on nanoparticles or physical stimuli-responsive substances have shown great potential to overcome the inherent shortcomings of conventional cancer therapies. In fact, nanoparticles may increase the half-life of chemotherapeutic agents or promote the targeting in cancer tissues while physical stimuli-responsive substances are more effective and safer with respect to traditional chemotherapeutic agents because of the possibility to be switched on only when needed. These 2 approaches can be combined by exploiting the ability of some inorganic nanomaterials to be activated by light, ultrasounds, magnetic fields, or ionizing radiations. Albeit the development of stimuli-responsive materials is still at the early stages, research in this field is rapidly growing since they have important advantages with respect to organic nanoparticles or molecular substances, like higher stability, and higher efficiency in converting the stimulus in heat or, in some cases, reactive oxygen species. On the other hand, the translation process is slowed down by issues related to safety and quality of the formulations. This literature review summarizes the current advancements in this research field, analysing the most promising materials and applications.


Subject(s)
Nanoparticles , Nanostructures , Neoplasms , Humans , Nanostructures/therapeutic use , Neoplasms/therapy , Neoplasms/drug therapy , Medical Oncology , Nanoparticles/therapeutic use
3.
Opt Express ; 29(9): 13269-13287, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985065

ABSTRACT

Increasing the number of laser beams that can be coherently combined requires accurate and fast algorithms for compensating phase and alignment errors. The paper proposes to use a Fully Connected Artificial Neural Network (FCANN) to correct the beam positioning perturbations by evaluating the beam shifts and tilts from two images taken at slightly different locations. Then, since it is practically impossible to have a large enough experimental dataset to train the neural network, this approach required developing an accurate and fast simulation method to evaluate the beam propagation in arbitrary directions, overcoming the limitations occurring when the computation must be repeated a large number of times. The numerical approach is a variant of the Angular Spectrum (AS) method, called Non Uniform ADaptive Angular Spectrum (NUADAS) method, which relies on the combination of non-uniform and adaptive Fourier transform algorithms to allow the computation of an arbitrary field distribution in a plane that is shifted and tilted with respect to the source. The parallel implementation of the NUADAS method is discussed and the numerical and experimental validations are presented. Then, an FCANN is trained using the synthetic dataset generated with the NUADAS method and the results are discussed, demonstrating the viability of the proposed approach not only for coherent beam combing, but also in other beam alignment applications.

4.
Nanomedicine (Lond) ; 16(9): 689-707, 2021 04.
Article in English | MEDLINE | ID: mdl-33851540

ABSTRACT

Aim: To investigate near infrared-induced phototoxicity toward lung cancer cells, and the biodegradability and effect on immune cells of glucose-derived carbon nanoparticles (CNPs). Methods: The human A549 lung adenocarcinoma cell line was used as a model to study the phototoxicity of CNPs. The biodegradability and the effect on immune cells was demonstrated in primary human neutrophils and macrophages. Results: Near infrared-activated CNPs elicited rapid cell death, characterized by the elevation of heat shock proteins and the induction of DNA damage. CNPs were found to be noncytotoxic toward primary human macrophages and were susceptible to biodegradation when cocultured with human neutrophils. Conclusions: Our results identify CNPs as promising platforms for photothermal therapy of lung cancer.


Subject(s)
Lung Neoplasms , Nanoparticles , A549 Cells , Carbon , Cell Line, Tumor , Humans , Lung Neoplasms/therapy , Photothermal Therapy
5.
Free Radic Biol Med ; 134: 165-176, 2019 04.
Article in English | MEDLINE | ID: mdl-30639569

ABSTRACT

Elemental carbon nanomaterials (ECNMs) are redox active agents that can be exploited to purposely modify the redox balance of cells. Both pro- or antioxidant properties have been reported. However, to the best of our knowledge, there are not comprehensive studies exploring both properties on the same material in view of a potential application in medicine. At the same time, the effect of the bulk structure on the pro/antioxidant properties is poorly known. Here, carbon nanoparticles (CNPs) derived by glucose with definite size and shape have been prepared, and their redox properties evaluated in cell free systems in the dark or following activation with a Near Infrared (NIR) laser beam (945 nm, 1.3 W/cm2). We found that, when irradiated with NIR, CNPs efficiently generate heat and singlet oxygen (1O2), a property that can be exploited for dual photo-thermal (PT)/photodynamic (PD) therapy in cancer. On the other hand, in the absence of photo-activation, CNPs react with both oxidant (hydroxyl radicals) and antioxidant (glutathione) species. When tested on a murine macrophages cell line (RAW 264.7) CNPs were clearly antioxidant. Furthermore, albeit efficiently internalized, CNPs do not exert cytotoxic effect up to 80 µg/ml and do not exacerbate TNF-α-mediated inflammation. Overall, the results reported herein suggest that CNPs may represent a new class of safe nanomaterials with potential applications in medicine.


Subject(s)
Antioxidants/chemistry , Carbon/chemistry , Light , Macrophages/metabolism , Nanoparticles/chemistry , Oxidants/chemistry , Animals , Mice , Oxidation-Reduction , Photochemical Processes , RAW 264.7 Cells , Spectroscopy, Near-Infrared , Surface Properties
6.
Int J Hyperthermia ; 34(8): 1372-1380, 2018 12.
Article in English | MEDLINE | ID: mdl-29322853

ABSTRACT

OBJECTIVES: The palliative treatment of cholangiocarcinoma is based on stent placement with well-known procedure-related complications. Consequently, alternative energy-based techniques were put forward with controversial long-term results. This study aims to evaluate the safety and effectiveness of biliary tree laser ablation (LA) in terms of: (i) absence of perforation, (ii) temperature increase, (iii) induced thermal damage in in vivo models. MATERIALS AND METHODS: The common bile duct and cystic ducts of two pigs were ablated with a diode laser (circumferential irradiation pattern) for 6 and 3 min at 7 W. Laser settings were chosen from previous ex vivo experiments. Local temperature was monitored through a fibre Bragg grating (FBG) sensor embedded into the laser delivery probe. Histopathological analysis of the ablated specimen was performed through in situ endomicroscopy, haematoxylin and eosin (H&E) and nicotinamide adenine dinucleotide (NADH) stains. RESULTS: Temperature reached a plateau of 53 °C with consequent thermal damage on the application area, regardless of laser settings and application sites. No perforation was detected macroscopically or microscopically. At the H&E stain, wall integrity was always preserved. The NADH stain allowed to evaluate damage extension. It turned out that the ablation spreading width depended on application time and duct diameter. In situ endomicroscopy revealed a clear distinction between ablated and non-ablated areas. CONCLUSIONS: The temperature distribution obtained through LA proved to induce a safe and effective intraductal coagulative necrosis of biliary ducts. These results represent the basis for further experiments on tumour-bearing models for the treatment of obstructive cholangiocarcinoma.


Subject(s)
Bile Duct Neoplasms/surgery , Bile Ducts/surgery , Cholangiocarcinoma/surgery , Laser Therapy , Animals , Swine
7.
J Biomed Opt ; 22(9): 1-9, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28914008

ABSTRACT

The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment.


Subject(s)
Fiber Optic Technology , Laser Therapy , Liver/surgery , Temperature , Animals , Hyperthermia, Induced , Swine
8.
Appl Opt ; 55(23): 6530-7, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27534506

ABSTRACT

The paper presents the development of a tool based on a back-propagation artificial neural network to assist in the accurate positioning of the lenses used to collimate the beam from semiconductor laser diodes along the so-called fast axis. After training using a Gaussian beam ray-equivalent model, the network is capable of indicating the tilt, decenter, and defocus of such lenses from the measured field distribution, so the operator can determine the errors with respect to the actual lens position and optimize the diode assembly procedure. An experimental validation using a typical configuration exploited in multi-emitter diode module assembly and fast axis collimating lenses with different focal lengths and numerical apertures is reported.

9.
Appl Opt ; 55(11): 2998-3005, 2016 Apr 10.
Article in English | MEDLINE | ID: mdl-27139866

ABSTRACT

Multipath interference (MPI) in bend-insensitive optical fibers is investigated by analyzing different aspects, ranging from a review of the theoretical background, through the analysis of measurement issues, to the characterization of short patch cords. Two setups for the characterization of MPI are analyzed, highlighting their advantages and limitations. Then, a number of commercial bend-insensitive fibers are compared, showing that they generally exhibit a level below -30 dB in the range of 1250-1350 nm. The investigation also includes short offset-spliced fiber segments, with lengths to 1 cm, to simulate the behavior of field-installable connectors and isolate their contribution to the MPI. The results show a step-like increment of MPI when two or more cm-long fiber segments are cascaded.

10.
Appl Opt ; 54(34): 10240-8, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26836683

ABSTRACT

The paper presents a new expression for determining the beam parameter product of a multi-emitter laser diode module made by stacking several single emitter chips. The proposed formula takes into account the effect of collimating and focusing lenses and has been validated experimentally, obtaining excellent agreement between theoretical expectations and measurements. A practical application to optimize the lenses' configuration for the design of a fiber-coupled multi-emitter module is also reported.

11.
Appl Opt ; 47(28): 5123-9, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18830301

ABSTRACT

A fiber Bragg grating (FBG) vibroacoustic sensor exploiting an intensity-based interrogation principle is presented. The optical system is complemented by signal processing techniques that allow disturbances to be mitigated and improve the spectral estimation. The sensor is capable of performing frequency analysis of sounds up to 3 kHz, with top sensitivity in the 100-500 Hz frequency range, and of dynamically tracking pulsed phenomena that induce a strain to the FBG. The sensor has been applied to the detection of voice, showing a great intelligibility of the speech despite the low-quality environment, and to the monitoring of the heartbeat rate from the wrist.


Subject(s)
Phonation , Signal Processing, Computer-Assisted , Voice/physiology , Equipment Design/economics , Equipment Design/instrumentation , Fiber Optic Technology/methods , Heart Rate/physiology , Transducers/economics , Voice Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...