Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Gen Comp Endocrinol ; 313: 113886, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34411583

ABSTRACT

The vasopressin-vasotocin (AVP-AVT) and oxytocin-mesotocin-isotocin (OT-MT-IT) families of nonapeptides are of great importance in shaping context-dependent modulations of a conserved and yet highly plastic network of brain areas involved in social behavior: the social behavior network. The nonapeptide systems of teleost fish are highly conserved and share a common general organization. In this study, we first describe the presence of IT cells and projections in the brain of an electric fish, Gymnotus omarorum. Second, we confirm that IT neuron types and distribution in the preoptic area (POA) follow the same general pattern previously described in other teleost species. Third, we show that although IT and AVT neurons occur intermingled within the POA of G. omarorum and can be classified into the same subgroups, they present subtle but remarkable differences in size, number, and location. Finally, we show that unlike AVT, IT has no effect on basal electric signaling, reinforcing the specificity in the actions that each one of these nonapeptides has on social behavior and communication.


Subject(s)
Electric Fish , Vasotocin , Animals , Electric Fish/physiology , Neurons , Oxytocin/analogs & derivatives
2.
Front Behav Neurosci ; 12: 1, 2018.
Article in English | MEDLINE | ID: mdl-29403366

ABSTRACT

Dominant-subordinate status emerges from agonistic encounters. The weakly electric fish, Gymnotus omarorum, displays a clear-cut example of non-breeding territorial aggression. The asymmetry in the behavior of dominants and subordinates is outstanding. Dominants are highly aggressive and subordinates signal submission in a precise sequence of locomotor and electric traits: retreating, decreasing their electric organ discharge rate, and emitting transient electric signals. The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homolog arginine-vasopressin, are key modulators of social behavior, known to adapt their actions to different contexts. By analyzing the effects of pharmacological manipulations of the AVT system in both dominants and subordinates, we show evidence of distinct status-dependent actions of AVT. We demonstrate an endogenous effect of AVT on dominants' aggression levels: blocking the V1a AVT receptor induced a significant decrease in dominants' attack rate. AVT administered to subordinates enhanced the expression of the electric signals of submission, without affecting subordinates' locomotor displays. This study contributes a clear example of status-dependent AVT modulation of agonistic behavior in teleosts, and reveals distinctive activation patterns of the AVT system between dominants and subordinates.

3.
J Physiol Paris ; 110(3 Pt B): 224-232, 2016 10.
Article in English | MEDLINE | ID: mdl-27915075

ABSTRACT

In vertebrates, aggression has been traditionally associated with high levels of circulating androgens in breeding males. Nevertheless, the centrality of androgens as primary modulators of aggression is being reconsidered in at least in two particular cases: (1) territorial aggression outside the breeding season, and (2) aggression by females. We are developing the weakly electric fish, Gymnotus omarorum, as a novel, advantageous model system to address these two alternative forms of aggression. This species displays a short, escalated contest, after which a clear hierarchical status emerges. Subordination of individuals involves three sequential decisions: interruptions of their electric discharges, retreats, and chirps. These decisions are influenced by both size asymmetry between contenders and aggression levels of dominants. Both females and males are aggressive, and do not differ in fighting ability nor in the value placed on the resource. Aggression is completely independent of gonadal hormones: dominance status is unrelated to circulating androgen and estrogen levels, and gonadectomy in males does not affect aggression. Nevertheless, estrogenic pathways participate in the modulation of this non-breeding aggression. Our results parallel those put forth in other taxa, heightening the value of G. omarorum as a model to identify commonalities in neuroendrocrine strategies of vertebrate aggression control.


Subject(s)
Aggression/physiology , Gymnotiformes/physiology , Animals , Female , Male , Models, Animal , Neurosecretory Systems/physiology
4.
J Physiol Paris ; 110(3 Pt A): 119-126, 2016 10.
Article in English | MEDLINE | ID: mdl-27940222

ABSTRACT

Animals establish social hierarchies through agonistic behavior. The recognition of the own and others social ranks is crucial for animals that live in groups to avoid costly constant conflicts. Weakly electric fish are valuable model systems for the study of agonistic behavior and its neuromodulation, given that they display conspicuous electrocommunication signals that are generated by a very well-known electromotor circuit. Brachyhypopomus gauderio is a gregarious electric fish, presents a polygynous breeding system, morphological and electrophysiological sexual dimorphism during the breeding season, and displays a typical intrasexual reproduction-related aggression. Dominants signal their social status by increasing their electric organ discharge (EOD) rate after an agonistic encounter (electric dominance). Subordinates only occasionally produce transient electric signals (chirps and offs). The hypothalamic neuropeptide arginine-vasotocin (AVT) and its mammalian homologue, arginine- vasopressin (AVP) are key modulators of social behavior across vertebrates. In this study, we focus on the role of AVT on dominance establishment in Brachyhypopomus gauderio by analyzing the effects of pharmacological manipulations of the AVT system in potential dominants. AVT exerts a very specific direct effect restricted only to EOD rate, and is responsible for the electric dominance. Unexpectedly, AVT did not affect the intensity of aggression in either contender. Nor was the time structure affected by AVT administration. We also present two interesting examples of the interplay between contenders by evaluating how AVT modulations, even when directed to one individual, affect the behavior of the dyad as a unit. First, we found that V1a AVT receptor antagonist Manning Compound (MC) induces a reversion in the positive correlation between dominants' and subordinates' attack rates, observed in both control and AVT treated dyads, suggesting that an endogenous AVT tone modulates aggressive interactions. Second, we confirmed that AVT administered to dominants induces an increase in the submissive transient electric signals in subordinates.


Subject(s)
Agonistic Behavior/drug effects , Gymnotiformes/physiology , Social Dominance , Vasotocin/pharmacology , Agonistic Behavior/physiology , Animals , Oxytocics/pharmacology
5.
Bioinspir Biomim ; 11(6): 065002, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767014

ABSTRACT

Agonistic behaviour related to territorial defence is likely to be costly in terms of energy loss and risk of injury. Hence information about the fighting ability of a potential opponent could influence the outcome of the contest. We here study electric images of the territorial and aggressive weakly electric fish Gymnotus omarorum in the context of agonistic behaviour. We show that passive and active electric images may drive the approach towards an opponent. The likelihood of first attacks can be predicted in these fish based on electric image information, suggesting that aggressive interactions may in fact be triggered through the passive electrosensory information.


Subject(s)
Electric Organ/physiology , Gymnotiformes/physiology , Territoriality , Animals
6.
J Physiol Paris ; 110(3 Pt A): 75, 2016 10.
Article in English | MEDLINE | ID: mdl-28587721
7.
J Physiol Paris ; 108(2-3): 203-12, 2014.
Article in English | MEDLINE | ID: mdl-25125289

ABSTRACT

The neural bases of social behavior diversity in vertebrates have evolved in close association with hypothalamic neuropeptides. In particular, arginine-vasotocin (AVT) is a key integrator underlying differences in behavior across vertebrate taxa. Behavioral displays in weakly electric fish are channeled through specific patterns in their electric organ discharges (EODs), whose rate is ultimately controlled by a medullary pacemaker nucleus (PN). We first explored interspecific differences in the role of AVT as modulator of electric behavior in terms of EOD rate between the solitary Gymnotus omarorum and the gregarious Brachyhypopomus gauderio. In both species, AVT IP injection (10µg/gbw) caused a progressive increase of EOD rate of about 30%, which was persistent in B. gauderio, and attenuated after 30min in G. omarorum. Secondly, we demonstrated by in vitro electrophysiological experiments that these behavioral differences can be accounted by dissimilar effects of AVT upon the PN in itself. AVT administration (1µM) to the perfusion bath of brainstem slices containing the PN produced a small and transient increase of PN activity rate in G. omarorum vs the larger and persistent increase previously reported in B. gauderio. We also identified AVT neurons, for the first time in electric fish, using immunohistochemistry techniques and confirmed the presence of hindbrain AVT projections close to the PN that might constitute the anatomical substrate for AVT influences on PN activity. Taken together, our data reinforce the view of the PN as an extremely plastic medullary central pattern generator that not only responds to higher influences to adapt its function to diverse contexts, but also is able to intrinsically shape its response to neuropeptide actions, thus adding a hindbrain target level to the complexity of the global integration of central neuromodulation of electric behavior.


Subject(s)
Biological Clocks/physiology , Electric Fish/physiology , Vasotocin/physiology , Animals , Behavior, Animal/physiology , Electric Organ/innervation , Electric Organ/physiology , Electrophysiological Phenomena/physiology , Hypothalamus/physiology , Immunohistochemistry , In Vitro Techniques , Male , Nerve Fibers/physiology , Rhombencephalon/metabolism , Rhombencephalon/physiology , Species Specificity
8.
J Exp Biol ; 216(Pt 13): 2412-20, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23761466

ABSTRACT

Agonistic behavior has shaped sociality across evolution. Though extremely diverse in types of displays and timing, agonistic encounters always follow the same conserved phases (evaluation, contest and post-resolution) and depend on homologous neural circuits modulated by the same neuroendocrine mediators across vertebrates. Among neuromodulators, serotonin (5-HT) is the main inhibitor of aggression, and arginine vasotocin (AVT) underlies sexual, individual and social context differences in behavior across vertebrate taxa. We aim to demonstrate that a distinct spatio-temporal pattern of activation of the social behavior network characterizes each type of aggression by exploring its modulation by both the 5-HT and AVT systems. We analyze the neuromodulation of aggression between the intermale reproduction-related aggression displayed by the gregarious Brachyhypopomus gauderio and the non-breeding intrasexual and intersexual territorial aggression displayed by the solitary Gymnotus omarorum. Differences in the telencephalic activity of 5-HT between species were paralleled by a differential serotonergic modulation through 1A receptors that inhibited aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio. AVT injection increased the motivation towards aggression in the territorial aggression of G. omarorum but not in the reproduction-related aggression of B. gauderio, whereas the electric submission and dominance observed in G. omarorum and B. gauderio, respectively, were both AVT-dependent in a distinctive way. The advantages of our model species allowed us to identify precise target areas and mechanisms of the neuromodulation of two types of aggression that may represent more general and conserved strategies of the control of social behavior among vertebrates.


Subject(s)
Aggression , Electric Fish/physiology , Neurotransmitter Agents/metabolism , Serotonin/metabolism , Vasotocin/metabolism , Animals , Behavior, Animal , Female , Male , Sexual Behavior, Animal , Territoriality
9.
Front Behav Neurosci ; 6: 77, 2012.
Article in English | MEDLINE | ID: mdl-23181014

ABSTRACT

Agonistic aggression has provided an excellent framework to study how conserved circuits and neurochemical mediators control species-specific and context-dependent behavior. The principal inhibitory control upon aggression is serotonin (5-HT) dependent, and the activation of 5-HT(1A) receptors is involved in its action. To address whether the serotonergic system differentially regulates different types of aggression, we used two species of weakly electric fish: the solitary Gymnotus omarorum and the gregarious Brachyhypopomus gauderio, which display distinctive types of aggression as part of each species' natural behavioral repertoire. We found that in the reproduction-related aggression displayed by B. gauderio after conflict resolution, the serotonergic activity follows the classic pattern in which subordinates exhibit higher 5-HT levels than controls. After the territorial aggression displayed by G. omarorum, however, both dominants and subordinates show lower 5-HT levels than controls, indicating a different response of the serotonergic system. Further, we found interspecific differences in basal serotonin turnover and in the dynamic profile of the changes in 5-HT levels from pre-contest to post-contest. Finally, we found the expected reduction of aggression and outcome shift in the territorial aggression of G. omarorum after 8-OH-DPAT (5-HT(1A) receptor agonist) administration, but no effect in the reproduction-related aggression of B. gauderio. Our results demonstrate the differential participation of the serotonergic system in the modulation of two types of aggression that we speculate may be a general strategy of the neuroendocrine control of aggression across vertebrates.

10.
Article in English | MEDLINE | ID: mdl-20802858

ABSTRACT

Social behavior diversity is correlated with distinctively distributed patterns of a conserved brain network, which depend on the action of neuroendocrine messengers that integrate extrinsic and intrinsic cues. Arginine vasotocin (AVT) is a key integrator underlying differences in behavior across vertebrate taxa. Weakly electric fish use their electric organ discharges (EODs) as social behavioral displays. We examined the effect of AVT on EOD rate in two species of Gymnotiformes with different social strategies: Gymnotus omarorum, territorial and highly aggressive, and Brachyhypopomus gauderio, gregarious and aggressive only between breeding males. AVT induced a long-lasting and progressive increase of EOD rate in isolated B. gauderio, partially blocked by the V1a AVT receptor antagonist (Manning compound, MC), and had no effects in G. omarorum. AVT also induced a long-lasting increase in the firing rate (prevented by MC) of the isolated medullary pacemaker nucleus (PN) of B. gauderio when tested in an in vitro preparation, indicating that the PN is the direct effector of AVT actions. AVT is involved in the seasonal, social context-dependent nocturnal increase of EOD rate that has been recently described in B. gauderio to play a role in mate selection. AVT produced the additional nocturnal increase of EOD rate in non-breeding males, whereas MC blocked it in breeding males. Also, AVT induced a larger EOD rate increase in reproductive dyads than in agonistic encounters. We demonstrated interspecific, seasonal, and context-dependent actions of AVT on the PN that contribute to the understanding of the mechanisms the brain uses to shape sociality.

11.
Article in English | MEDLINE | ID: mdl-19277680

ABSTRACT

Brachyhypopomus pinnicaudatus (pulse-type weakly electric fish) is a gregarious species that displays reproductive behavior and agonistic encounters between males only during the breeding season. During social interactions, in addition to its basal electric organ discharge (EOD), fish emit social electric signals (SESs) in the contexts of reproduction and intrasexual aggression. We reproduced natural behavior in laboratory settings: SESs recorded in the field are indistinguishable from those observed in our experimental setup. SESs are nocturnal, change seasonally and exhibit sexual dimorphism. This study provides an exhaustive characterization and classification of SESs produced by males and females during the breeding season. In male-female dyads, males produce accelerations and chirps while females interrupt their EODs. The same SESs are observed in male-male dyads. We present a novel, thorough classification of male chirps into four independent types (A, B, C, and M) based on their duration and internal structure. The type M chirp is only observed in male-male dyads. Chirps and interruptions, both in male-female and male-male dyads, are emitted in bouts, which are also grouped throughout the night. Our data suggest the existence of a sophisticated electric dialog during reproductive and aggressive interaction whose precise timing and behavioral significance are being investigated.


Subject(s)
Agonistic Behavior/physiology , Animal Communication , Courtship , Gymnotiformes/physiology , Sexual Behavior, Animal/physiology , Animals , Circadian Rhythm , Female , Male , Seasons
12.
J Physiol Paris ; 102(4-6): 272-8, 2008.
Article in English | MEDLINE | ID: mdl-18992332

ABSTRACT

Behavior in electric fish includes modulations of a stereotyped electric organ discharge (EOD) in addition to locomotor displays. Gymnotiformes can modulate the EOD rate to produce signals that participate in different behaviors. We studied the reproductive behavior of Brachyhypopomus pinnicaudatus both in the wild and laboratory settings. During the breeding season, fish produce sexually dimorphic social electric signals (SES): males emit three types of chirps (distinguished by their duration and internal structure), and accelerations, whereas females interrupt their EOD. Since these SES imply EOD frequency modulations, the pacemaker nucleus (PN) is involved in their generation and constitutes the main target organ to explore seasonal and sexual plasticity of the CNS. The PN has two types of neurons, pacemakers and relays, which receive modulatory inputs from pre-pacemaker structures. These neurons show an anisotropic rostro-caudal and dorso-ventral distribution that is paralleled by different field potential waveforms in distinct portions of the PN. In vivo glutamate injections in different areas of the PN provoke different kinds of EOD rate modulations. Ventral injections produce chirp-like responses in breeding males and EOD interruptions in breeding females, whereas dorsal injections provoke EOD frequency rises in both sexes. In the non-breeding season, males and females respond with interruptions when stimulated ventrally and frequency rises when injected dorsally. Our results show that changes of glutamate effects in the PN could explain the seasonal and sexual differences in the generation of SES. By means of behavioral recordings both in the wild and in laboratory settings, and by electrophysiological and pharmacological experiments, we have identified sexual and seasonal plasticity of the CNS and explored its underlying mechanisms.


Subject(s)
Animal Communication , Brain/cytology , Neuronal Plasticity/physiology , Seasons , Sex Characteristics , Animals , Brain/physiology , Electric Fish/anatomy & histology , Electric Fish/physiology , Female , Male , Social Behavior
13.
Physiol Behav ; 90(2-3): 525-36, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17178133

ABSTRACT

The electric organ discharge (EOD) of weakly electric fish encodes information about species, sex, behavioral, and physiological states throughout the lifetime. Its central command is crucial for sensory-motor coordination, and is therefore the target of plastic mechanisms that adapt fish to environmental and social challenges. The EOD waveform of Brachyhypopomus pinnicaudatus is modulated by environmental factors and the neuroendocrine system. In this study we investigate the effects of water temperature and day-night cycle upon EOD rate in this species during the breeding and non-breeding seasons. During the non-breeding season, EOD rate is a linear function of water temperature and exhibits counterclockwise hysteresis. During breeding, a thermal resistance strategy prevents the decrease of EOD rate to cooling. A nocturnal increase of EOD basal rate independent of water temperature and locomotor activity was demonstrated in isolated non-breeding adults and in male-female dyads all year round. An additional increase of nocturnal EOD rate, probably acting as a social courtship signal, was found in breeding dyads. This additional increase of nocturnal EOD rate could not be fully explained by gonadal maturation and was modulated by social stimuli. This study provides novel data on the complex interactions between environment, reproductive cycle, social behavior, and electromotor output in an advantageous model of the vertebrate central nervous system.


Subject(s)
Electric Fish/physiology , Electric Organ/physiology , Environment , Reproduction/physiology , Social Behavior , Activity Cycles/physiology , Animals , Female , Male , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...