Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 541: 257-267, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26410701

ABSTRACT

In agriculture, herbicides are applied to improve crop productivity. During and after rain event, herbicides can be transported by surface runoff in streams and rivers. As a result, the exposure pattern in creeks is time-varying, i.e., a repeated pollution of aquatic system. In previous studies, we developed a model to assess the effects of pulse exposure patterns on algae. This model was validated for triazines and phenylureas, which are substances that induce effects directly after exposure with no delay in recovery. However, other herbicides display a mode of action characterized by a time-dependency effect and a delay in recovery. In this study, we therefore investigate whether this previous model could be used to assess the effects of pulse exposure by herbicides with time delay in effect and recovery. The current study focuses on the herbicide S-metolachlor. We showed that the effect of the herbicide begins only after 20 h of exposure for the alga Scenedesmus vacuolatus based on both the optical density and algal cells size measurements. Furthermore, the duration of delay of the recovery for algae previously exposed to S-metolachlor was 20 h and did not depend on the pulse exposure duration or the height of the peak concentration. By accounting for these specific effects, the measured and predicted effects were similar when pulse exposure of S-metolachlor is tested on the alga S. vacuolatus. However, the sensitivity of the alga is greatly modified after being previously exposed to a pulse of S-metolachlor. In the case of scenarios composed of several pulses, this sensitivity should be considered in the modelling. Therefore, modelling the effects of any pulse scenario of S-metolachlor on an alga is feasible but requires the determination of the effect trigger, the delay in recovery and the possible change in the sensitivity of the alga to the substance.


Subject(s)
Acetamides/toxicity , Herbicides/toxicity , Scenedesmus/drug effects , Water Pollutants, Chemical/toxicity , Dose-Response Relationship, Drug , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...