Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35061003

ABSTRACT

We exploited traceable gene tagging in primary human T cells to establish the composition and dynamics of seven canonical TCR-induced protein signaling complexes (signalosomes) using affinity purification coupled with mass spectrometry (AP-MS). It unveiled how the LAT adaptor assembles higher-order molecular condensates and revealed that the proximal TCR-signaling network has a high degree of qualitative and quantitative conservation between human CD4+ and CD8+ T cells. Such systems-level conservation also extended across human and mouse T cells and unexpectedly encompassed protein-protein interaction stoichiometry. Independently of evolutionary considerations, our study suggests that a drug targeting the proximal TCR signaling network should behave similarly when applied to human and mouse T cells. However, considering that signaling differences likely exist between the distal TCR-signaling pathway of human and mouse, our fast-track AP-MS approach should be favored to determine the mechanism of action of drugs targeting human T cell activation. An opportunity is illustrated here using an inhibitor of the LCK protein tyrosine kinase as a proof-of-concept.


Subject(s)
Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Biomarkers , Cell Communication/immunology , Gene Editing , Humans , Immunophenotyping , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Models, Biological , Phosphorylation , Protein Interaction Mapping , Species Specificity , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
2.
Eur J Immunol ; 50(10): 1454-1467, 2020 10.
Article in English | MEDLINE | ID: mdl-32460359

ABSTRACT

Invariant Natural Killer T (iNKT) cells are particular T lymphocytes at the frontier between innate and adaptative immunities. They participate in the elimination of pathogens or tumor cells, but also in the development of allergic reactions and autoimmune diseases. From their first descriptions, the phenomenon of self-reactivity has been described. Indeed, they are able to recognize exogenous and endogenous lipids. However, the mechanisms underlying the self-reactivity are still largely unknown, particularly in humans. Using a CD1d tetramer-based sensitive immunomagnetic approach, we generated self-reactive iNKT cell lines from blood circulating iNKT cells of healthy donors. Analysis of their functional characteristics in vitro showed that these cells recognized endogenous lipids presented by CD1d molecules through their TCR that do not correspond to α-glycosylceramides. TCR sequencing and transcriptomic analysis of T cell clones revealed that a particular TCR signature and an expression of the SYK protein kinase were two mechanisms supporting human iNKT self-reactivity. The SYK expression, strong in the most self-reactive iNKT clones and variable in ex vivo isolated iNKT cells, seems to decrease the activation threshold of iNKT cells and increase their overall antigenic sensitivity. This study indicates that a modulation of the TCR intracellular signal contributes to iNKT self-reactivity.


Subject(s)
Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell/genetics , Syk Kinase/metabolism , Animals , Antigens, CD1d/metabolism , Autoantigens/immunology , Autoimmunity , Cell Line , Humans , Lipids/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Syk Kinase/genetics , Transcriptome
3.
Clin Cancer Res ; 25(23): 7218-7228, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31506386

ABSTRACT

PURPOSE: Cellular immunotherapies are currently being explored to eliminate highly invasive and chemoradioresistant glioblastoma (GBM) cells involved in rapid relapse. We recently showed that concomitant stereotactic injections of nonalloreactive allogeneic Vγ9Vδ2 T lymphocytes eradicate zoledronate-primed human GBM cells. In the present study, we investigated the spontaneous reactivity of allogeneic human Vγ9Vδ2 T lymphocytes toward primary human GBM cells, in vitro and in vivo, in the absence of any prior sensitization. EXPERIMENTAL DESIGN: Through functional and transcriptomic analyses, we extensively characterized the immunoreactivity of human Vγ9Vδ2 T lymphocytes against various primary GBM cultures directly derived from patient tumors. RESULTS: We evidenced that GBM cells displaying a mesenchymal signature are spontaneously eliminated by allogeneic human Vγ9Vδ2 T lymphocytes, a reactivity process being mediated by γδ T-cell receptor (TCR) and tightly regulated by cellular stress-associated NKG2D pathway. This led to the identification of highly reactive Vγ9Vδ2 T lymphocyte populations, independently of a specific TCR repertoire signature. Moreover, we finally provide evidence of immunotherapeutic efficacy in vivo, in the absence of any prior tumor cell sensitization. CONCLUSIONS: By identifying pathways implicated in the selective natural recognition of mesenchymal GBM cell subtypes, accounting for 30% of primary diagnosed and 60% of recurrent GBM, our results pave the way for novel targeted cellular immunotherapies.


Subject(s)
Glioblastoma/immunology , Glioblastoma/pathology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/pathology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Animals , Apoptosis , Cell Proliferation , Glioblastoma/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...